Answer:
BDEG
Explanation:
got it right on the test on edge because i used my b r a i n
Answer:
189.15cy
Explanation:
To understand this problem we need to understand as well the form.
It is clear that there is four wall, two short and two long.
The two long are 
The two long are 
The two shors are 
The height and the thickness are 14ft and 0.83ft respectively.
So we only calculate the Quantity of concrete,
![Q_c = [(2*122.08)+(2*86-375)]*14*0.833\\Q_c=4864.02ft^3](https://tex.z-dn.net/?f=Q_c%20%3D%20%5B%282%2A122.08%29%2B%282%2A86-375%29%5D%2A14%2A0.833%5C%5CQ_c%3D4864.02ft%5E3)
That in cubic yards is equal to 
Hence, we need order 5% plus that represent with the quantity

Answer:
Qx = 9.10
m³/s
Explanation:
given data
diameter = 85 mm
length = 2 m
depth = 9mm
N = 60 rev/min
pressure p = 11 ×
Pa
viscosity n = 100 Pas
angle = 18°
so Qd will be
Qd = 0.5 × π² ×D²×dc × sinA × cosA ..............1
put here value and we get
Qd = 0.5 × π² × ( 85
)²× 9
× sin18 × cos18
Qd = 94.305 ×
m³/s
and
Qb = p × π × D × dc³ × sin²A ÷ 12 × n × L ............2
Qb = 11 ×
× π × 85
× ( 9
)³ × sin²18 ÷ 12 × 100 × 2
Qb = 85.2 ×
m³/s
so here
volume flow rate Qx = Qd - Qb ..............3
Qx = 94.305 ×
- 85.2 ×
Qx = 9.10
m³/s
Answer:
The time required is 10.078 hours or 605 min
Explanation:
The formula to apply here is ;
K=(d²-d²₀ )/t
where t is time in hours
d is grain diameter to be achieved after heating in mm
d₀ is the grain diameter before heating in mm
Given
d=5.5 × 10^-2 mm
d₀=2.4 × 10^-2 mm
t₁= 500 min = 500/60 =25/3 hrs
t₂=?
n=2.2
First find K
K=(d²-d²₀ )/t₁
K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3
K=(0.051²-0.024²) ÷25/2
K=0.000243 mm²/h
Re-arrange equation for K ,to get the equation for d as;
d=√(d₀²+ Kt) where now t=t₂
