1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
8

Psychological disorders:

Physics
2 answers:
dimulka [17.4K]3 years ago
4 0

Answer:

C. Can diminish a person's ability to live life.

Explanation:

A P E X

Olin [163]3 years ago
3 0

Answer:

Hmmm...It should be B.

Explanation:

You can't just assume you have depression just because of one day of sadness. You have to wait until you get more...factors or "symptoms", if so, you shouldn't diagnose yourself until you can confirm it by a mental health doctor (Not sure what it's called) or therapist.

××× If it's not B, I sincerely apologize! ×××

(This is just an example)

You might be interested in
NEED HELP ASAP PLEASE!
katrin [286]

Answer:

Here is the solution hope it helps:)

5 0
2 years ago
Provide the following information for each of the three types of radiations from naturally radioactive materials. Be sure to inc
scoundrel [369]

<em>Alpha radiation:</em>  Particles.  Each alpha particle is a little bundle of 2 protons and 2 neutrons ... identical to the nucleus of a Helium atom.

Charge  . . . +2 elementary charges

Mass  . . . 4 Atomic Mass Units

Relative penetrating power  . . . low

The effect an electric field would have on it . . . Since the alpha particle has a positive charge, it's repelled by other positive charges, and attracted toward negative charges.

<em>Beta radiation</em>:  Particles.  Each beta particle is an electron.

Charge  . . . -1 elementary charge

Mass  . . . 0.00055 AMU

Relative penetrating power  . . . medium

The effect an electric field would have on it . . .  repelled by other negative charges, and attracted toward positive charges.

<em>Gamma radiation</em>:  electromagnetic wave, verrrrry short wave, high frequency

Charge . . . electromagnetic wave, no charge

Mass  . . . electromagnetic wave, no mass

Relative penetrating power  . . . high

The effect an electric field would have on it . . . electromagnetic wave, no effect

5 0
3 years ago
What is the dependent variable in this
Whitepunk [10]

Answer:

"the plants had already started growing."

Explanation:

I think this is the answer because the definition of a dependent variable is the variable that is being affected by the change. Since the plants had already started growing BECAUSE of "They ran out of the farmer's compost, so

some of the plants received that compost

when the seeds were planted and other

plants got hardware store compost after

the plants had already started growing."

Sorry if I am wrong, I am just a 4th grader, pls don't hate on me, I am just trying to help :)

6 0
3 years ago
Firemen are shooting a stream of water at a burning building. A high-pressure hose shoots out the water with a speed of 26.0 m/s
alekssr [168]

Answer:

a) θ = 58.3º

b) vfh = 13.7 m/s

c) g = -9.8 m/s2

d) h = 22.2 m

e) vfb = 15.5 m/s

Explanation:

a)

  • Assuming that gravity is the only influence that causes an acceleration to the water, due to it is always downward, since both directions are independent each other, in the horizontal direction, the water moves at a constant speed.
  • Since the velocity vector has a magnitude of 26.0 m/s, we can find its horizontal component as follows:
  • vₓ₀ = v * cos θ (1)
  • where θ is the angle between the water and the horizontal axis (which we define as the x-axis, being positive to the right).
  • Applying the definition of average velocity, taking the end of the hose like the origin, and making t₀ = 0, we can write the following expression:

        x_{f} = v_{ox} * t = v_{o} * cos \theta * t  (2)

  • Replacing by the givens of xf = 41.0m, t = 3.00 s, and v=26.0 m/s, we can solve for the angle of elevation θ, as follows:

        cos \theta = \frac{x_{f} }{v*t} = \frac{41.0m}{26.0m/s*3.00s} = 0.526 (3)

  • ⇒θ = cos⁻¹ (0.526) = 58.3º (4)

b)

  • At the highest point in its trajectory, just before starting to fall, the vertical component of the velocity is just zero.
  • Since the horizontal component keeps constant during all the journey, we can conclude that the speed at this point is just v₀ₓ, that we can find easily from (1) replacing by the values of v and cos θ, as follows:
  • vₓ₀ = v * cos θ = 26.0 m/s * 0.526 = 13.7 m/s. (5)

c)

  • At any point in the trajectory, the only acceleration present is due to the action of gravity, which accepted value is -9.8 m/s2 (taking the upward direction on the vertical y-axis as positive)

d)

  • Since we know the time when the water strikes the building, it will be the same for the vertical movement, so, we can use the kinematic equation for vertical displacement, as follows:

       \Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (6)

  • Our only unknown remains v₀y, which can be obtained in the same way than the horizontal component:
  • v₀y = v * sin θ = 26.0 m/s * 0.85 = 22.1 m/s (7)
  • Replacing (7) in (6), we get:

       \Delta y = 22.1 m/s* 3.0s - \frac{1}{2} *9.8m/s2*(3.00s)^{2} = 22.2 m (8)

e)

  • When the water hits the building the velocity vector, has two components, the horizontal vₓ and the vertical vy.
  • The horizontal component, since it keeps constant, is just v₀x:
  • v₀ₓ = 13.7 m/s
  • The vertical component can be found applying the definition of acceleration (g in this case), solving for the final velocity, as follows:

       v_{fy} = v_{oy} - g*t  (9)

  • Replacing by the time t (a given), g, and  v₀y from (7), we can solve (9) as follows:

       v_{fy} = 22.1 m/s - 9.8m/s2*3.00s = -7.3 m/s  (10)

  • Since we know the values of both components (perpendicular each other), we can find the magnitude of the velocity vector (the speed, i.e. how fast is it moving), applying the Pythagorean Theorem to v₀ₓ and v₀y, as follows:

       v_{f} = \sqrt{(13.7m/s)^{2} +(-7.3m/s)^{2}} = 15.5 m/s (11)

3 0
3 years ago
Contrast balanced and unbalanced forces.
Bogdan [553]

Answer:

Balanced forces do not cause a change in motion. When balanced forces act on an object at rest, the object will not move. If you push against a wall, the wall pushes back with an equal but opposite force. ... Forces that cause a change in the motion of an object are unbalanced forces.

8 0
3 years ago
Other questions:
  • Where do the electrons that form the auroras enter the magnetosphere? a. Through holes c. At the equator b. Between the magnetic
    14·2 answers
  • How does the speed of radio waves compare with the speed of infrared waves?
    9·1 answer
  • Speakers A and B are vibrating in phase. They are directly facing each other, are 8.0 m apart, and are each playing a 75.0-Hz to
    6·2 answers
  • Which of these is the best description for a circuit with an open switch?
    7·1 answer
  • Which is not an example of an external force acting on an object? (1 point)
    10·1 answer
  • Electrically inert metal ball A is connected to the ground by a wire. What happens to the charge of this ball if you bring a neg
    13·1 answer
  • The distance between Neptune and the Sun is 30.06 AU. What is this distance in millions of kilometers? (One AU is about 150 mill
    10·2 answers
  • Determine the angle between the directions of vector A with rightwards arrow on top = 3.00i + 1.00j and vector B with rightwards
    6·1 answer
  • HELPPPP
    7·1 answer
  • Question 1 of 10
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!