Answer:
a) V = - x ( σ / 2ε₀)
c) parallel to the flat sheet of paper
Explanation:
a) For this exercise we use the relationship between the electric field and the electric potential
V = - ∫ E . dx (1)
for which we need the electric field of the sheet of paper, for this we use Gauss's law. Let us use as a Gaussian surface a cylinder with faces parallel to the sheet
Ф = ∫ E . dA =
/ε₀
the electric field lines are perpendicular to the sheet, therefore they are parallel to the normal of the area, which reduces the scalar product to the algebraic product
E A = q_{int} /ε₀
area let's use the concept of density
σ = q_{int}/ A
q_{int} = σ A
E = σ /ε₀
as the leaf emits bonnet towards both sides, for only one side the field must be
E = σ / 2ε₀
we substitute in equation 1 and integrate
V = - σ x / 2ε₀
V = - x ( σ / 2ε₀)
if the area of the sheeta is 100 cm² = 10⁻² m²
V = - x (10⁻²/(2 8.85 10⁻¹²) = - x ( 5.6 10⁻¹⁰)
x = 1 cm V = -1 V
x = 2cm V = -2 V
This value is relative to the loaded sheet if we combine our reference system the values are inverted
V ’= V (inf) - V
x = 1 V = 5
x = 2 V = 4
x = 3 V = 3
These surfaces are perpendicular to the electric field lines, so they are parallel to the sheet.
In the attachment we can see a schematic representation of the equipotential surfaces
b) From the equation we can see that the equipotential surfaces are parallel to the sheet and equally spaced
c) parallel to the flat sheet of paper
Answer:
Newton's First Law of Motion.
Explanation:
Newton's First Law of Motion states that a body continues its state of motion untill and unless an external force acts on it. Here, the truck moves forward even after the breaks are applied in order to maintain its State of motion.
<u>Answer:</u> The remaining sample of X is 6.9 grams.
<u>Explanation:</u>
All the radioactive reactions follow first order kinetics.
The equation used to calculate rate constant from given half life for first order kinetics:

We are given:

Putting values in above equation, we get:

The equation used to calculate time period follows:

where,
= initial mass of sample X = 78 g
N = remaining mass of sample X = ? g
t = time = 16.5 min
k = rate constant = 
Putting values in above equation, we get:

Hence, the remaining amount of sample X is 6.9 g
Answer:

Explanation:
The acceleration of an object is given by

where
v is the final velocity
u is the initial velocity
t is the time it takes for the velocity to change from u to v
For the boat in the problem,
v = 10 m/s
u = 0
t = 2 s
Substituting, we find the acceleration

Answer:
malesef herşey ingilizce yazıyor hiçbirşey anlayamadım
Explanation:
heeeeeem ben bunlardan anlamam giiiit başkasına sooooor bu arada en iyi seç benü bikere bari seçte bi en iyi cvp olsun