Answer:
The force applied on one wheel during braking = 6.8 lb
Explanation:
Area of the piston (A) = 0.4 
Force applied on the piston(F) = 6.4 lb
Pressure on the piston (P) = 
⇒ P = 
⇒ P = 16 
This is the pressure inside the cylinder.
Let force applied on the brake pad = 
Area of the brake pad (
)= 1.7 
Thus the pressure on the brake pad (
) = 
When brake is applied on the vehicle the pressure on the piston is equal to pressure on the brake pad.
⇒ P = 
⇒ 16 = 
⇒
= 16 × 
Put the value of
we get
⇒
= 16 × 1.7
⇒
= 27.2 lb
This the total force applied during braking.
The force applied on one wheel =
=
= 6.8 lb
⇒ The force applied on one wheel during braking.
Answer:
This is due to the relative melting points of the different layers (nickel–iron core, silicate crust and mantle) and the increase in temperature and pressure as depth increases We have the inner core, outer core, mantle and crust which play an important role on Earth.
a) x = 
at t = 5s

b) v = 
= 
at t = 5 s
v = 
c) a = 
= 28 - 12t
at t = 5 s
a = 28 -12*5= 28-60= -32 m/
d) At maximum positive coordinate velocity = 0
So, 

At t = 4.66 s

e) At t = 4.66 s
f) At maximum positive velocity a = 0


At t = 2.33 s
V = 
g) t = 2.33 s
h) When particle is not moving v = 0
So 

At t = 4.66 s
a = 
i) At t = 0s, X =0m
t = 5s, X = 100m
So, Displacement = 100m
Velocity = 
Answer:
213 s
Explanation:
Slope is the ratio of change in vertical distance to change in horizontal distance.
Slope = vertical height / horizontal height
Therefore:
6.4% = vertical height / 12.42
vertical height = 6.4% * 12.42
vertical height = 0.8 miles
The distance travelled by the car (s) is:
s² = 0.8² + 12.42²
s² = 154.9
s = 12.45 miles
Acceleration (a) = 2.93 ft/s^2 = 0.00055 mile/s²
initial velocity (u) = 0, final velocity = 203 mph
Using:
s = ut + 0.5at²
12.45 = 0.5(0.00055)t²
t =213 s
because of conduction the metal spoon is a conductor so the heat is getting traveled through the spoon and into your hand