Question: Find acceleration of a refrigerator 30s after a person begins pushing it at a force of 400 N, If the mass of the refrigerator is 10 kg.
Answer:
40 m/s²
Explanation:
Applying,
F = ma................Equation 1
Where F = Force applied to the refrigerator, m = mass of the refrigerator, a = acceleration of the refrigerator.
make a the subject of the equation
a = F/m............ Equation 2
From the question,
Given: F = 400 N, m = 10 kg
Substitute these values into equation 2
a = 400/10
a = 40 m/s²
The correct answer to the question is : C) The horizontal momentum and the vertical momentum are both conserved.
EXPLANATION :
Before coming into any conclusion, first we have to understand the law of conservation of momentum.
As per the law of conservation of momentum, the total linear as well as angular momentum of an isolated system is always conserved . The law of conservation of energy is a universal fact.
Hence, during any type of collision, the total momentum is always conserved.
Hence, the total horizontal momentum as well as total vertical momentum are always conserved during both elastic as well as inelastic collision.
Answer:
Top 10 Residential Uses for Solar Energy.
01. Solar Powered Ventilation Fans.
02. Solar Heating for Your Swimming Pool.
03. Solar Water Heater.
04. Solar House Heating.
05.Solar Powered Pumps.
06. Charging Batteries With Solar Power.
07. Power Your Home With Photo-Electric.
08. Solar Energy For Cooking.
09. Solar energy for outdoor lighting.
10. Solar transportation.
Freeze wedging<span> is caused by the repeated freeze-thaw. </span>Frost wedging<span> occurs as the result of 9 % expansion of water when it is converted to ice. Cracks filled with water are forced further apart when it freezes. cycle.</span>
Answer:
Moment of inertia of the system is 289.088 kg.m^2
Explanation:
Given:
Mass of the platform which is a uniform disk = 129 kg
Radius of the disk rotating about vertical axis = 1.61 m
Mass of the person standing on platform = 65.7 kg
Distance from the center of platform = 1.07 m
Mass of the dog on the platform = 27.3 kg
Distance from center of platform = 1.31 m
We have to calculate the moment of inertia.
Formula:
MOI of disk =
Moment of inertia of the person and the dog will be mr^2.
Where m and r are different for both the bodies.
So,
Moment of inertia of the system with respect to the axis yy.
⇒
⇒
⇒
⇒
The moment of inertia of the system is 289.088 kg.m^2