1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
3 years ago
8

Consider the following balanced equation: SiO2(s)+3C(s)→SiC(s)+2CO(g) Complete the following table showing the appropriate numbe

r of moles of reactants and products. If the number of moles of a reactant is provided, fill in the required amount of the other reactant, as well as the moles of each product formed. If the number of moles of a product is provided, fill in the required amount of each reactant to make that amount of product, as well as the amount of the other product that is made.
Mol SiO2 Mol C Mol SiC Mol CO

Row 1: 3 _____ _____ _____

Row 2: _____ 6 _____ _____

Row 3: _____ _____ _____ 16

Row 4: 2.8 _____ _____ _____

Row 5: _____ 2.45 _____ _____

A. complete the first row. Express your answers using one significant figure separated by commas. Mol C, Mol SiC, Mol CO =

B. Complete the second row. Express your answers using one significant figure separated by commas. Mol SiO2, Mol SiC, Mol CO =

C. Complete the third row. Express your answers using two significant figures separated by commas. Mol SiO2, Mol C, Mol SiC =

D. Complete the fourth row. Express your answers using two significant figures separated by commas. Mol SiO2, Mol C, Mol SiC =

E. Complite the fifth row. Express your answers using three significant figures separated by commas. Mol SiO2, Mol SiC, Mol CO =
Chemistry
2 answers:
Anuta_ua [19.1K]3 years ago
6 0

Answer:

A) 3SiO_2(s)+9C(s)\rightarrow 3SiC(s)+6CO(g)

B) 2SiO_2(s)+6C(s)\rightarrow 2SiC(s)+4CO(g)

C)8.0SiO_2(s)+24C(s)\rightarrow 8.0SiC(s)+16CO(g)

D)2.8SiO_2(s)+8.4C(s)\rightarrow 2.8SiC(s)+5.6CO(g)

E)0.816SiO_2(s)+2.45C(s)\rightarrow 0.816SiC(s)+1.63CO(g)

Explanation:

SiO_2(s)+3C(s)\rightarrow SiC(s)+2CO(g)

A) When 3 moles of silicon dioxide are present.

According to reaction 1 mole of silicon dioxide react with 3 moles of carbon to give 1 mole of silicon carbide and 2 moles of carbon monoxide.

Then 3 moles of silicon dioxide will react with :

\frac{3}{1}\times 3mol=9 mol of carbon

Then 3 moles of silicon dioxide will give :

\frac{1}{1}\times 3 mol= 3 mol of silicon carbide

Then 3 moles of silicon dioxide will give :

\frac{2}{1}\times 3 mol= 6 mol of carbon monoxide

3SiO_2(s)+9C(s)\rightarrow 3SiC(s)+6CO(g)

B) When 6 moles of carbon are present.

According to reaction 3 moles of carbon reacts with 1 mole of silicon dioxide react with to give 1 mole of silicon carbide and 2 moles of carbon monoxide.

Then 6 moles of carbon will react with :

\frac{1}{3}\times 6 mol=2 mol of silicon dioxde

Then 3 moles of carbon  will give :

\frac{1}{3}\times 6 mol= 2 mol of silicon carbide

Then 6 moles of carbon will give :

\frac{2}{3}\times 6 mol= 4 mol of carbon monoxide

2SiO_2(s)+6C(s)\rightarrow 2SiC(s)+4CO(g)

C)When 6 moles of carbon are present.

According to reaction ,1 mole of silicon carbide and 2 moles of carbon monoxide is produced when, 3 moles of carbon reacts with 1 mole of silicon dioxide reacts.

Then 16 moles of carbon monoxide will be produced from :

\frac{1}{2}\times 16 mol=8 mol of silicon dioxide

Then 16 moles of carbon monoxide will give :

\frac{3}{2}\times 16 mol= 24 mol of carbon

Along with 16 moles of carbon monoxide will give :

\frac{1}{2}\times 16 mol= 8 mol of silicon carbide

8SiO_2(s)+24C(s)\rightarrow 8SiC(s)+16CO(g)

D) When 2.8 moles of silicon dioxide are present.

According to reaction 1 mole of silicon dioxide react with 3 moles of carbon to give 1 mole of silicon carbide and 2 moles of carbon monoxide.

Then 2.8 moles of silicon dioxide will react with :

\frac{3}{1}\times 2.8 mol=8.4 mol of carbon

Then 2.8 moles of silicon dioxide will give :

\frac{1}{1}\times 2.8 mol= 2.8 mol of silicon carbide

Then 2.8 moles of silicon dioxide will give :

\frac{2}{1}\times 2.8 mol= 5.6 mol of carbon monoxide

2.8SiO_2(s)+8.4C(s)\rightarrow 2.8SiC(s)+5.6CO(g)

E) When 2.45 moles of carbon are present.

According to reaction 3 moles of carbon reacts with 1 mole of silicon dioxide react with to give 1 mole of silicon carbide and 2 moles of carbon monoxide.

Then 2.45 moles of carbon will react with :

\frac{1}{3}\times 2.45 mol=0.8166 mol of silicon dioxde

Then 3 moles of carbon  will give :

\frac{1}{3}\times 2.45 mol= 0.8166 mol of silicon carbide

Then 6 moles of carbon will give :

\frac{2}{3}\times 2.45 mol= 1.6333 mol of carbon monoxide

0.816SiO_2(s)+2.45C(s)\rightarrow 0.816SiC(s)+1.63CO(g)

Step2247 [10]3 years ago
4 0

Answer:

              mol(SiO₂)              mol(C)               mol(SiC)                    mol(CO)

Row 1:      0.8 x 10               0.9 x 10              0.3 x 10                     0.6 x 10

Row 2:     0.2 x 10               0.6 x 10              0.2 x 10                     0.4 x 10

Row 3:         8.0                   2.4 x 10                   8.0                        1.6 x 10

Row 4:         2.8                      8.4                        2.8                            5.6

Row 5:        0.816                  2.45                      0.816                         1.63

Explanation:

  • From the balanced equation:

<em>SiO₂(s) + 3C(s) → SiC(s) + 2CO(g),</em>

<em></em>

It is clear that 1.0 mole of SiO₂ reacts with 3.0 moles of C to produce 1.0 mole of SiC and 2.0 moles of CO.

  • We can complete the table of no. of moles of each component:

<em>A. complete the first row. Express your answers using one significant figure separated by commas. Mol C, Mol SiC, Mol CO =</em>

<em>3.0 moles of SiO₂:</em>

We use the triple amount of SiO₂, so we multiply the others by 3.0.

So, it will be 3.0 moles of SiO₂ with 9.0 moles of C that produce 3.0 moles of SiC and 6.0 moles of CO.

<em>B. Complete the second row. Express your answers using one significant figure separated by commas. Mol SiO2, Mol SiC, Mol CO =</em>

<em>6.0 mole of C:</em>

We use the double amount of C, so we multiply the others by 2.0.

So, it will be 2.0 moles of SiO₂ with 6.0 moles of C that produce 2.0 moles of SiC and 4.0 moles of CO.

<em>C. Complete the third row. Express your answers using two significant figures separated by commas. Mol SiO2, Mol C, Mol SiC =</em>

<em>16.0 moles of CO:</em>

We use the amount of CO higher by 8 times than that in the balanced equation, so we multiply the others by 8.0.

So, it will be 8.0 moles of SiO₂ with 24.0 moles of C that produce 8.0 moles of SiC and 16.0 moles of CO.

<em>D. Complete the fourth row. Express your answers using two significant figures separated by commas. Mol SiO2, Mol C, Mol SiC =</em>

<em>2.8 moles of SiO₂:</em>

We use the amount of SiO₂ higher by 2.8 times than that in the balanced equation, so we multiply the others by 2.8.

So, it will be 2.8 moles of SiO₂ with 8.4 moles of C that produce 2.8 moles of SiC and 5.6 moles of CO.

<em>E. Complite the fifth row. Express your answers using three significant figures separated by commas. Mol SiO2, Mol SiC, Mol CO =</em>

<em>2.45 moles of C:</em>

We use the amount of C lower by 0.8167 times than that in the balanced equation, so we multiply the others by 0.8167.

So, it will be 0.8167 moles of SiO₂ with 2.45 moles of C that produce 0.8167 moles of SiC and 1.633 moles of CO.

  • <em><u>The answers are expressed in the required significant figures in the answer part (table above).</u></em>
You might be interested in
A 45.0-gram sample of copper metal was heated from 20.0°C to 100.0°C. Calculate the heat absorbed, in kJ, by the metal.
s2008m [1.1K]

Answer:

1.386 KJ

Explanation:

From the question given above, the following data were obtained:

Mass (M) of copper = 45 g

Initial temperature (T1) = 20.0°C

Final temperature (T2) = 100.0°C

Heat absorbed (Q) =..?

Next, we shall determine the change in temperature. This can be obtained as follow:

Initial temperature (T1) = 20.0°C

Final temperature (T2) = 100.0°C

Change in temperature (ΔT) =?

ΔT = T2 – T1

ΔT = 100 – 20

ΔT = 80 °C

Next, we shall determine the heat absorbed by the sample of copper as follow:

Mass (M) of copper = 45 g

Change in temperature (ΔT) = 80 °C

Specific heat capacity (C) of copper = 0.385 J/gºC

Heat absorbed (Q) =..?

Q = MCΔT

Q = 45 × 0.385 × 80

Q = 1386 J

Finally, we shall convert 1386 J to KJ. This can be obtained as follow:

1000 J = 1 KJ

Therefore,

1386 J = 1386 J × 1 KJ /1000 J

1386 J = 1.386 KJ

Thus, the heat absorbed by the sample of the sample of copper is 1.386 KJ.

5 0
3 years ago
What is the volume in liters of hydrogen gas that would be produced by the reaction of 40.0 g of Al with excess HCl at STP accor
DaniilM [7]

The volume in liters of Hydrogen gas = 49.28 L

<h3>Further explanation </h3>

The reaction equation is the chemical formula of reagents and product substances  

A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products  

Reaction

2 Al (s) + 6 HCl (aq) → 2 AlCl₃ (aq) + 3 H₂ (g)

mol Al :

\tt mol=\dfrac{mass}{Ar}=\dfrac{40}{27}=1.481

mol  H₂ :

\tt \dfrac{3}{2}\times 1.481=2.2

At STP, 1 mol =22.4 L

so the volume of hydrogen :

\tt 2.2 \times 22.4=49.28~L

8 0
3 years ago
Read 2 more answers
What best describes a solution ?
topjm [15]
A solution is the answer to a problem
8 0
4 years ago
Read 2 more answers
PLEASE HELP!!!
algol [13]
Question 1 answer: A

Question 2 answer: H

Question 3 answer: J

Question 4 answer: T
8 0
4 years ago
List three things that rely on the Sun as the major source of energy​
valkas [14]

Answer:

Three things that rely on the sun for energy is coal,oil, and natural gases

Explanation:

We use engery too cook our food that's an example of how gases are used.

We run our cars .Cars use oil.

And we use electricity for lights. You need coal for the electricity

6 0
3 years ago
Read 2 more answers
Other questions:
  • What compound is Rb2CrO4
    7·1 answer
  • How many pounds of iron will it take to construct the bridge over the hoover dam
    12·1 answer
  • Which two statements about an electric motor are true?
    15·1 answer
  • To investigate the relationship between enzyme activity and substrate concentration, a student is supposed to prepare a reaction
    13·1 answer
  • 5. Compare the threats faced by the Everglades and the Louisiana wetan
    11·1 answer
  • )Calculate the molar mass of glucose (C​6H12O6)
    7·1 answer
  • Thermal energy added to a substance that is not changing state causes the substance’s temperature to
    11·1 answer
  • Plz help I need help plz ASAP
    10·1 answer
  • 6. What do we call Ethene that has been polymerised?​
    11·1 answer
  • What is responsible for the differences in chemical shift observed in carbon 4 in 4-fluoroheptane and carbon 4 in heptane?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!