Answer:

Explanation:
As we know by first law of thermodynamics that for ideal gas system we have
Heat given = change in internal energy + Work done
so here we will have
Heat given to the system = 2.2 kJ
Q = 2200 J
also we know that work done by the system is given as

so we have



Answer:
Yes. The fact that an object moves at constant velocity implies that its speed is also constant. Note that the converse statement isn't necessarily true.
Explanation:
Velocity is a vector. For two vectors to be equal to each other,
- their magnitudes (sizes) need be the same, and
- they need to point in the same direction.
In motions, the magnitude of an object's velocity is the same as its speed.
If the car moves with a constant velocity, that means that
- the magnitude of its velocity, the speed of the car, is constant;
- also, the direction of the car's motion is also constant.
In other words,
.
Note that the arrow here points only from the velocity side to the speed side. It doesn't point backward because knowing that the speed of an object is constant won't be sufficient to prove that the velocity of the object is also constant. For example, for an object in a uniform circular motion, the speed is constant but the direction keeps changing. Hence the velocity isn't constant.
The atomic procedure clarifies why this is the situation is beginning from carbon ( the nuclear number is 6), the most widely recognized atomic responses include the combination of an extra helium core. I hope the answer will help you.
The moon is closer to the earth than the sun
Answer:
λ = V / f the wavelength versus the frequency
V = f λ and V (speed) proportional λ for a fixed frequency
F = f^2 * (M / L) * λ^2 = (f * λ)^2 * (M / L)^2 force (tension) on string at a given frequency
F2 / F1 = (λ2 / λ1)^2 other items are constant
Let λ1 = 6 then λ2 must be 3/2 λ1 for a constant length
F2 / F1 = (6 / 4)^2 = 9/4
The tension must be increased to 9 / 4 of the original tension
Check: if the frequency is fixed then V will be larger for a larger wavelength (situation 2)
One can also write V = (F / (M / L))^1/2
Then for fixed M L
F2 / F1 = (V2 / V1)^2
Since V = f λ Velocity is proportional to λ for a fixed frequency
Then if V2 / V1 = 3 / 2 F2 = 9/4 F1