1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
3 years ago
14

When a hammer thrower releases her ball, she is aiming to maximize the distance from the starting ring. Assume she releases the

ball at an angle of 54.6 degrees above horizontal, and the ball travels a total horizontal distance of 30.1 m. What angular velocity must she have achieved (in radians/s) at the moment of the throw, assuming the ball is 1.15 m from the axis of rotation during the spin?
Physics
1 answer:
Taya2010 [7]3 years ago
8 0

Answer:

The angular velocity is 15.37 rad/s

Solution:

As per the question:

\theta = 54.6^{\circ}

Horizontal distance, x = 30.1 m

Distance of the ball from the rotation axis is its radius, R = 1.15 m

Now,

To calculate the angular velocity:

Linear velocity, v = \sqrt{\frac{gx}{sin2\theta}}

v = \sqrt{\frac{9.8\times 30.1}{sin2\times 54.6}}

v = \sqrt{\frac{9.8\times 30.1}{sin2\times 54.6}}

v = \sqrt{\frac{294.98}{sin109.2^{\circ}}} = 17.67\ m/s

Now,

The angular velocity can be calculated as:

v = \omega R

Thus

\omega = \frac{v}{R} = \frac{17.67}{1.15} = 15.37\ rad/s

You might be interested in
Astronomers know that the distance between the Earth and the Sun averages 1.50 x108 km. How can astronomers use the observed ste
rodikova [14]

Answer:

The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).

From the equation below, the stars distances can be calculated.

D = 1/p

Distance = 1/(parallax angle)

Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.

Explanation:

Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.

The parallax of an object can be used to approximate the distance to an object using the formula:

D = 1/p

Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years

3 0
3 years ago
you get a flat tire on her car while driving. You use a jack to change the tire. It exerts a force of 5,000 N to lift the car 0.
ch4aika [34]

Answer:

b is the anwser

Explanation:

you are super

6 0
3 years ago
Biker A is cruising at a speed of 10.0 m/s when she passes biker B who is at rest at the origin of the coordinate system. Biker
Burka [1]

Answer: attached

Explanation:

3 0
3 years ago
Consider and mass of a material​
Leni [432]

Answer:Density is the mass of an object divided by its volume. Density often has units of grams per cubic centimeter (g/cm3). ... You probably have an intuitive feeling for density in the materials you use often. For example, sponges are low in density; they have a low mass per unit volume.

Explanation:

3 0
2 years ago
A 1.60 m cylindrical rod of diameter 0.550 cm is connected to a power supply that maintains a constant potential difference of 1
bija089 [108]

1.

Answer:

Part a)

\rho = 1.35 \times 10^{-5}

Part b)

\alpha = 1.12 \times 10^{-3}

Explanation:

Part a)

Length of the rod is 1.60 m

diameter = 0.550 cm

now if the current in the ammeter is given as

i = 18.7 A

V = 17.0 volts

now we will have

V = I R

17.0 = 18.7 R

R = 0.91 ohm

now we know that

R = \rho \frac{L}{A}

0.91 = \rho \frac{1.60}{\pi(0.275\times 10^{-2})^2}

\rho = 1.35 \times 10^{-5}

Part b)

Now at higher temperature we have

V = I R

17.0 = 17.3 R

R = 0.98 ohm

now we know that

R = \rho \frac{L}{A}

0.98 = \rho' \frac{1.60}{\pi(0.275\times 10^{-2})^2}

\rho' = 1.46 \times 10^{-5}

so we will have

\rho' = \rho(1 + \alpha \Delta T)

1.46 \times 10^{-5} = 1.35 \times 10^{-5}(1 + \alpha (92 - 20))

\alpha = 1.12 \times 10^{-3}

2.

Answer:

Part a)

i = 1.55 A

Part b)

v_d = 1.4 \times 10^{-4} m/s

Explanation:

Part a)

As we know that current density is defined as

j = \frac{i}{A}

now we have

i = jA

Now we have

j = 1.90 \times 10^6 A/m^2

A = \pi(\frac{1.02 \times 10^{-3}}{2})^2

so we will have

i = 1.55 A

Part b)

now we have

j = nev_d

so we have

n = 8.5 \times 10^{28}

e = 1.6 \times 10^{-19} C

so we have

1.90 \times 10^6 = (8.5 \times 10^{28})(1.6 \times 10^{-19})v_d

v_d = 1.4 \times 10^{-4} m/s

8 0
3 years ago
Other questions:
  • What is the linkin park song that has rattling metal noise in it?
    15·1 answer
  • a 6-kg and a 4-kg ball are acted on by forces of equal size. if the large ball accelerates at 2 m/s2 what acceleration will the
    9·2 answers
  • JUST PLZ HELP!!! Why does the lightbulb in the right electrical circuit turn on but not the one on the left?
    14·2 answers
  • Can someone help me its A,B,C,D
    5·1 answer
  • A 562 N trunk is on frictionless plane inclined at 30.0 degrees from the horizontal. What is the acceleration of the trunk down
    11·1 answer
  • State Newton's first law of motion​
    6·2 answers
  • А A van accelerates from Amst to zomst in 8s. How far does it<br>travel in<br>this time?​
    8·1 answer
  • If the marshmallows represent the atoms in the substance, which change of state is Freida modeling Freida wants to model the way
    10·2 answers
  • Which item is a pure substance?
    9·2 answers
  • A record player has a velocity of 33.33 RPM. How fast is the record spinning in m/s at a distance of 0.085 m from the center?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!