Answer:
The period of the wave does not change looting the value that accompanies the time, the wavelength does not change since it is the constant that accompanies x.
We see that the amplitude is twice the amplitude of the incident waves. Since the wave is stationary the velocity is zero
Explanation:
In this exercise we are given the equation of two traveling waves, it is asked to find the resulting wave
u = f + g
u = 2 sin (x + t) + 2 sin (x-t)
we will develop double angled breasts
u = 2 [(sin x cos t + sin t cos x) + (sin x cos t - sin t cos x)]
u = 2 [2 sin x cos t]
u = 4 sin x cos t
The period of the wave does not change looting the value that accompanies the time, the wavelength does not change since it is the constant that accompanies x.
We see that the amplitude is twice the amplitude of the incident waves. Since the wave is stationary the velocity is zero
Carries a box: tension in worker's arms
Nails fall: force of gravity
Magnet: magnetic force.
Option C
In nuclear fission and fusion the mass defect is the mass lost during the reaction that is converted into energy
<u>Explanation:</u>
Mass defect is the contrast within the estimated mass of the released system and the empirically estimated mass of the nucleus. The nuclear binding energy is acknowledged as mass, and that mass enhances "missing".
This missing mass is described as a mass defect, which is nuclear energy, also acknowledged as the mass discharged from the reaction as any trajectories. The mass defect of a nucleus depicts the mass of the energy adhesive of the nucleus and is the variation amidst the mass of a nucleus and the entirety of the masses of the nucleons of which it is comprised.
Answer:
In an elastic collision, the momentum is conserved and the mechanical energy is conserved too.
Explanation:
There are two types of collisions:
- Elastic collision: in an elastic collision, the total momentum before and after the collision is conserved; also, the total mechanical energy before and after the collision is conserved.
- Inelastic collision: in an inelastic collision, the total momentum before and after the colllision is conserved, while the total mechanical energy is not conserved (in fact, part of the energy is converted into other forms of energy such that thermal energy, due to the presence of frictional forces)