Answer:
2. Option B.
Explanation:
H₂SO₄ + Ba(OH)₂ → BaSO₄ + 2H₂O
You can count 2H in sulfuric acid and 2 H in the barium hyrdoxide, so the coefficient for water must be 2.
You will have 4 H on both sides of the reaction.
Try with the dissociations of each reactant
Sulfuric acid ⇒ H₂SO₄ → 2H⁺ + SO₄⁻²
Barium hydroxide ⇒ Ba(OH)₂ → Ba²⁺ + 2OH⁻
Sulfate anion bonds to barium cation to produce the salt, therefore the 2 protons will bond the 2 hydroxide in order to produce, 2 moles of H₂O
2H⁺ + 2OH⁻ → 2H₂O
Answer:
WHY: You can abbreviate an element's electron configuration using the noble gas notation method because when you get down to the lower elements, specifically the d's and the f's, the electron configuration will be very long. The noble gas notation method is a faster answer while also being correct.
HOW: We can abbreviate an element's electron configuration by finding the last noble gas a specific element passed, for example calcium would have just passed Argon. Once you have the "address" of the previous noble gas, then you add on the difference between the element chosen and the noble gas, for example calcium would be [Ar] 4s^2.
Explanation:
Answer:
a. Kp=1.4


b.Kp=2.0 * 10^-4


c.Kp=2.0 * 10^5


Explanation:
For the reaction
A(g)⇌2B(g)
Kp is defined as:

The conditions in the system are:
A B
initial 0 1 atm
equilibrium x 1atm-2x
At the beginning, we don’t have any A in the system, so B starts to react to produce A until the system reaches the equilibrium producing x amount of A. From the stoichiometric relationship in the reaction we get that to produce x amount of A we need to 2x amount of B so in the equilibrium we will have 1 atm – 2x of B, as it is showed in the table.
Replacing these values in the expression for Kp we get:

Working with this equation:

This last expression is quadratic expression with a=4, b=-(4+Kp) and c=1
The general expression to solve these kinds of equations is:
(equation 1)
We just take the positive values from the solution since negative partial pressures don´t make physical sense.
Kp = 1.4


With x1 we get a partial pressure of:


Since negative partial pressure don´t make physical sense x1 is not the solution for the system.
With x2 we get:


These partial pressures make sense so x2 is the solution for the equation.
We follow the same analysis for the other values of Kp.
Kp=2*10^-4
X1=0.505
X2=0.495
With x1


Not sense.
With x2


X2 is the solution for this equation.
Kp=2*10^5
X1=50001

With x1


Not sense.
With x2


X2 is the solution for this equation.
Balanced equation is
HBr + NaOH ----> NaBr + H2O
Using molar masses
80.912 g HBr reacts with 39.997 g of Naoh to give 18.007 g water
so 1 gram of NaOH reacts with 2.023 g of HBR
and 5.7 reacts with 11.531 g HBr so we have excess HBr in this reaction
Mass of water produced = (5.7 * 18.007 / 39.997 = 2.6 g to 2 sig figs
Answer:
Explanation:
It involves the thinking of it as an electrical interaction between the positively charged part of an atom and the negatively charged part as well. Succinctly put, the interaction between the proton of an atom and the electron of an atom.
The relationship between these two sub atomic particles is one of the basis for many chemical bonding, and this is inclusive of all the bonds there exist. Hydrogen, Electrovalent and even Covalent bondings to mention but a few