D. 289
Take the formula:
K=5/9(Fahrenheit-32)+273
Plug in Fahrenheit
K=5/9 (60-32)+273
From here it is simple math and you can plug it into your calculator getting 288.5555556 and round to 289
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.
Answer:
Subducting convergent boundary
Explanation:
Generally, volcanoes occurs in both divergent and convergent boundaries. But the convergent boundary it occurs is usually associated with subduction.
Divergent boundary, plates move away from each other creating a new crust in the process. The diverging plates creates the space for magma to be squeezed through cracks and fissures. The magma's erupt to form volcanoes. In the Atlantic ocean the spreading of the plates causes an upwelling of magma through the crest of the Atlantic ridges. New oceanic crust are formed through this process. Sometimes the magma eruption forms volcanoes that are higher than the sea level.
Convergent boundary , plates collides with each other . But in the case of volcanoes existence , the collision should be between a denser plate(oceanic plates) and a less dense plates(continental plates) so that subduction can take place. The subducted plates (oceanic plates) creates trenches and get expose to high temperature and pressure as it sinks toward the mantle. The upper mantle rocks melts and migrate to the earth surface forming volcanoes . Over 75% of the volcanoes occur along the pacific basin where convergent boundary is dominant. Pacific ring of fire has one of the most number of volcanoes.
Answer:
6495.19 Joule
Explanation:
F = Weight of the crate = 250 N
d = Distance the cart is pushed = 30 m
θ = Angle of inclination = 60°
The weight of the crate will be resloved into two components
Fdsinθ and Fdcosθ
Work done by the force of gravity is
W = Fdsinθ
⇒W = 250×30×sin60
⇒W = 6495.19 Joule
∴ The work done by the force of gravity is 6495.19 Joule
5 What is the angular displacement at the end of the 25-mm-diameter shaft and the linear displacement of point A of Figure P5.5
<h3>What is
displacement ?</h3>
A displacement is a vector in geometry and mechanics that has a length equal to the shortest distance between a point P's initial and final positions. It calculates the length and angle of the net motion, or total motion, in a straight line from the starting point to the destination of the point trajectory. The translation that links the starting point and the ending point can be used to spot a displacement.
The final location xf of a point relative to its beginning position xi, or a relative position (derived from the motion), is another way to express a displacement. The difference between the end and beginning positions can be used to define the equivalent displacement vector
To learn more about displacement from the given link:
brainly.com/question/321442
#SPJ4