1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
7

Technician A says that a seal can be pried out of a bore using a sharp chisel. Technician B says that smaller metal-backed seals

can often be driven into place using a standard socket. Who is correct? Group of answer choicesA. A onlyB. B onlyC. BothD. Neither
Engineering
2 answers:
attashe74 [19]3 years ago
6 0

Answer:

The correct answer is letter "C": Both.

Explanation:

Industrial seals are used at interfaces between components to prevent leakage, to maintain heat, and to avoid contamination. The design, construction, and materials they use vary depending on industrial use but the most common are Polytetrafluoroethylene (PTFE), Nitrile Buna Rubber (NBR), and fluorocarbon.

Thus, using a sharp chisel could pry a seal out of a hole and a regular socket can often be used to force smaller metal-backed seals into place. Thus, technicians "A" and "B" are correct.

FrozenT [24]3 years ago
4 0

Answer:

the correct answer is c boyh

You might be interested in
Describe how you would control employee exposure to excessive noise in a mining environment
Alexandra [31]

Answer:

1. Buy Quiet – select and purchase low-noise tools and machinery

2. Maintain tools and equipment routinely (such 3. as lubricate gears)

3. Reduce vibration where possible

4. Isolate the noise source in an insulated room or enclosure

5. Place a barrier between the noise source and the employee

6. Isolate the employee from the source in a room or booth (such as sound wall or window

Explanation:

Hope my answer will help u.

7 0
2 years ago
An Otto cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and pres
My name is Ann [436]

Answer:

A)  222.58 kJ / kg

B)  0.8897 M^3/ kg

c)  0.7737 m^3/kg

D)  746.542 k

E)  536.017 kj/kg

efficiency = 58% ( approximately )

Explanation:

Given Data :

Gas constant (R) =  0.287 kJ/ kg.K

T1 = 310 k

P1 ( Kpa ) = 100

r = 11.5 ( compression ratio )

rp = 1.95 ( pressure ratio )

A ) specific internal energy at state 1

 = Cv*T1 =  0.718 * 310 = 222.58 kJ / kg

B) Relative specific volume at state 1

= P1*V1 = R*T1 ( ideal gas equation )

V1 = R*T1 / P1 = (0.287* 10^3*310 ) / 100 * 10^3

V1 = 88.97 / 100 = 0.8897 M^3/ kg

C ) relative specific volume at state 2

Applying  r ( compression ratio) = V1 / V2

11.5 = 0.8897 / V2

V2 = 0.8897 / 11.5 = 0.7737 m^3/kg

D) The temperature (k) at state 2

since the process is an Isentropic process we will apply the p-v-t relation

\frac{T1}{T2} = (\frac{V1}{V2}^{n-1}  ) = (\frac{P2}{P1} )^{\frac{n-1}{n} }

hence T2 = 9^{1.4-1} * 310 = 2.4082 * 310 = 746.542 k

e) specific internal energy at state 2

= Cv*T2 = 0.718  * 746.542 = 536.017 kj/kg

efficiency = output /input = 390.3511 / 667.5448 ≈ 58%

attached is a free hand diagram of an Otto cycle is attached below

3 0
4 years ago
What effect does air have on the acceleration of aircraft during flight?
scoundrel [369]
The effect would be the altitude of the air, the higher you go up the closer you are to space we’re there’s no oxygen and everything moves slow so when your trying to fly across the world it could feel like your moving slower
5 0
3 years ago
Viscous effects are negligible outside of the hydrodynamic boundary layer. (3 points) a. True b. False
Valentin [98]

Answer:

I would say false but I am not for sure

8 0
3 years ago
In C++ the declaration of floating point variables starts with the type name float or double, followed by the name of the variab
zubka84 [21]

Answer:

The given grammar is :

S = T V ;

V = C X

X = , V | ε

T = float | double

C = z | w

1.

Nullable variables are the variables which generate ε ( epsilon ) after one or more steps.

From the given grammar,

Nullable variable is X as it generates ε ( epsilon ) in the production rule : X -> ε.

No other variables generate variable X or ε.

So, only variable X is nullable.

2.

First of nullable variable X is First (X ) = , and ε (epsilon).

L.H.S.

The first of other varibles are :

First (S) = {float, double }

First (T) = {float, double }

First (V) = {z, w}

First (C) = {z, w}

R.H.S.

First (T V ; ) = {float, double }

First ( C X ) = {z, w}

First (, V) = ,

First ( ε ) = ε

First (float) = float

First (double) = double

First (z) = z

First (w) = w

3.

Follow of nullable variable X is Follow (V).

Follow (S) = $

Follow (T) = {z, w}

Follow (V) = ;

Follow (X) = Follow (V) = ;

Follow (C) = , and ;

Explanation:

4 0
3 years ago
Other questions:
  • In a tensile test on a steel specimen, true strain is 0.171 at a stress of 263.8 MPa. When true stress is 346.2 MPa, true strain
    7·1 answer
  • How does the map scale help to interpret the map?
    14·2 answers
  • A town is designing a rectangular, 4m deep settling tank for treating surface water intake. The tank will have a flow velocity o
    14·1 answer
  • A signal containing both a 5k Hz and a 10k Hz component is passed through a low-pass filter with a cutoff frequency of 4k Hz. Wh
    9·1 answer
  • A square isothermal chip is of width w 5 mm on a side and is mounted in a substrate such that its side and back surfaces are wel
    11·1 answer
  • Please choose a specific type of stability or control surface (e.g., a canard) and explain how it is used, what it is used for,
    5·1 answer
  • PLEASE HELP WITH THIS ASAP! Thanks
    6·1 answer
  • The gage pressure measured as 2.2 atm, the absolute pressure of gas is 3.2 bar. Please determine the local atmospheric pressure
    14·1 answer
  • The volume of the pyramid is 36 cubic cm, find the volume of the prism.
    5·1 answer
  • Why is personal development necessary based activity success life and career​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!