1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
7

Technician A says that a seal can be pried out of a bore using a sharp chisel. Technician B says that smaller metal-backed seals

can often be driven into place using a standard socket. Who is correct? Group of answer choicesA. A onlyB. B onlyC. BothD. Neither
Engineering
2 answers:
attashe74 [19]3 years ago
6 0

Answer:

The correct answer is letter "C": Both.

Explanation:

Industrial seals are used at interfaces between components to prevent leakage, to maintain heat, and to avoid contamination. The design, construction, and materials they use vary depending on industrial use but the most common are Polytetrafluoroethylene (PTFE), Nitrile Buna Rubber (NBR), and fluorocarbon.

Thus, using a sharp chisel could pry a seal out of a hole and a regular socket can often be used to force smaller metal-backed seals into place. Thus, technicians "A" and "B" are correct.

FrozenT [24]3 years ago
4 0

Answer:

the correct answer is c boyh

You might be interested in
For the system in problem 4, suppose a main memory access requires 30ns, the page fault rate is .01%, it costs 12ms to access a
raketka [301]

Answer:

a. 7.75

b. 24.4

Explanation:

The Operating system uses virtual memory and page tables maps these virtual address to physical address. TLB works as a cache for such mapping.

program >>> TLB >>> cache >>> Ram

A program search for a page in TLB, if it doesn't find that page it's a TLB miss and then further looks for the page in cache.

If the page is not in cache then it's a cache miss and further looks for the page in RAM.

If the page is not in RAM, then it's a page fault and program look for the data in secondary storage.

So, typical flow would be

Page Requested >> TLB miss >> cache miss >>main memory>> page fault >> looks in secondary memory.

Here,

Main memory access time= 30 ns

Page fault rate=.01%

page fault service time= 12ns

TLB access time=7 ns

TLB hit rate= .95%

TLB miss rate =1-.95=.05%

cache access time = 15 ns

cache miss rate= .3%

cache hit rate = 1-.3=.97%

So,

a) TLB hit time= TLB access time = 7 ns

cache hit time = TLB hit rate * TLB access time + TLB miss rate * ( TLB access time + cache hit time)

= .95 * 7 + .05 * (7+15)

= 7.75 ns

b) EAT for TLB hit= 7ns

Total EAT = TLB hit rate *( TLB access time + Cache hit rate * cache access time + cache miss rate * (cache + main memory access time))+ TLB miss rate ( TLB access time + main memory access time + cache hit rate * cache access time + cache miss rate ( cache + main memory access time))

= .95 *( 7 + (.97*15) + .03(15+30))+ .05*(7+30+(.97*15) + .03 ( 15 + 30))=24.4 ns

8 0
3 years ago
A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
bogdanovich [222]

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

7 0
3 years ago
Read 2 more answers
What is the magnetic force on a moving electric charge called
crimeas [40]
The magnetic force on a free moving charge is perpendicular to both the velocity of the charge and the magnetic field with direction given by the right hand rule. The force is given by the charge times the vector product of velocity and magnetic field.
4 0
3 years ago
Read 2 more answers
List the four processes in the Otto cycle.
OleMash [197]

Answer:

Explanation:

A woman walks due west on the deck of a ship at 3 miyh.The ship is moving north at a speed of 22 miyh.Find the speed and direction of the woman relative to the surface of the water.

7 0
3 years ago
Consider a thin suspended hotplate that measures 0.25 m × 0.25 m. The isothermal plate has a mass of 3.75 kg, a specific heat of
Orlov [11]

Answer:

Heat losses by convection, Qconv = 90W

Heat losses by radiation, Qrad = 5.814W

Explanation:

Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:

1. Radiation

2. Conduction

3. Convection

Convection is defined as the transfer of heat through the actual movement of the molecules.

Qconv = hA(Temp.final - Temp.surr)

Where h = 6.4KW/m2K

A, area of a square = L2

= (0.25)2

= 0.0625m2

Temp.final = 250°C

Temp.surr = 25°C

Q = 64 * 0.0625 * (250 - 25)

= 90W

Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.

Qrad = E*S*(Temp.final4 - Temp.surr4)

Where E = emissivity of the surface

S = boltzmann constant

= 5.6703 x 10-8 W/m2K4

Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)

= 5.814 W

7 0
3 years ago
Other questions:
  • The textile industry has seen steady growth in the United States.<br> O True<br> O False
    12·1 answer
  • A horse on the merry-go-round moves according to the equations r = 8 ft, u = (0.6t) rad, and z = (1.5 sin u) ft, where t is in s
    5·1 answer
  • A random sample of 5 hinges is selected from a steady stream of product from a punch press, and the a. b. proportion nonconformi
    12·1 answer
  • A process consists of two steps: (1) One mole of air at T = 800 K and P = 4 bar is cooled at constant volume to T = 350 K. (2) T
    7·1 answer
  • Why Your first project as the new web designer at Smart Design is to increase web traffic to help boost web orders. Before you b
    6·1 answer
  • List a minimum of four reasons why you might be rejected for a job offer.
    10·1 answer
  • PLEASE HELP AND ANSWER MY OTHER QUESTIONS!,
    7·1 answer
  • Which process made making copies of technical drawings easier?
    8·1 answer
  • Shane's 100-watt radio draws 7 amps of current on a 120-volt circuit. What is the resistance in the radio?
    8·1 answer
  • A high compression ratio may result in;
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!