Do not ionize in solutions
Poor conductors of electricity/heat
Low melting/boiling points
gases or liquids at room temperature
A planetary surface is where the solid (or liquid) material of the outer crust on certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets (including Earth), dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs).[1][2][3] The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus of a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land (or ground) is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.
In differentiated bodies, the surface is where the crust meets the planetary boundary layer. Anything below this is regarded as being sub-surface or sub-marine. Most bodies more massive than super-Earths, including stars and gas giants, as well as smaller gas dwarfs, transition contiguously between phases, including gas, liquid, and solid. As such, they are generally regarded as lacking surfaces.
Planetary surfaces and surface life are of particular interest to humans as it is the primary habitat of the species, which has evolved to move over land and breathe air. Human space exploration and space colonization therefore focuses heavily on them. Humans have only directly explored the surface of Earth and the Moon. The vast distances and complexities of space makes direct exploration of even near-Earth objects dangerous and expensive. As such, all other exploration has been indirect via space probes.
Indirect observations by flyby or orbit currently provide insufficient information to confirm the composition and properties of planetary surfaces. Much of what is known is from the use of techniques such as astronomical spectroscopy and sample return. Lander spacecraft have explored the surfaces of planets Mars and Venus. Mars is the only other planet to have had its surface explored by a mobile surface probe (rover). Titan is the only non-planetary object of planetary mass to have been explored by lander. Landers have explored several smaller bodies including 433 Eros (2001), 25143 Itokawa (2005), Tempel 1 (2005), 67P/Churyumov–Gerasimenko (2014), 162173 Ryugu (2018) and 101955 Bennu (2020). Surface samples have been collected from the Moon (returned 1969), 25143 Itokawa (returned 2010), 162173 Ryugu and 101955 Bennu.
Answer:
697 g
Explanation:
Ethanol (C₂H₅OH) and butanoic acid (C₃H₇COOH) react to form ethyl butanoate (C₃H₇COOC₂H₅) and water (H₂O).
C₂H₅OH + C₃H₇COOH → C₃H₇COOC₂H₅ + H₂O
The molar ratio of C₂H₅OH to C₃H₇COOC₂H₅ is 1:1. The moles of C₃H₇COOC₂H₅ produced from 6.00 moles of C₂H₅OH are:
6.00 mol C₂H₅OH × (1 mol C₃H₇COOC₂H₅/1 mol C₂H₅OH) = 6.00 mol C₃H₇COOC₂H₅
The molar mass of C₃H₇COOC₂H₅ is 116.16 g/mol. The mass corresponding to 6.00 mol is:
6.00 mol × (116.16 g/mol) = 697 g
Answer:
The amount in grams of hydrogen gas produced is 0.551 grams
Explanation:
The parameters given are;
Number of atoms of potassium, aₙ = 3.289 × 10²³ atoms
Chemical equation for the reaction is given as follows;
2K + 2H₂O
KOH + H₂
Avogadro's number,
, regarding the number of molecules or atom per mole is given s follows;
= 6.02 × 10²³ atoms/mole
Therefore;
The number of moles of potassium present = 3.289 × 10²³/(6.02 × 10²³) = 0.546 moles
2 moles of potassium produces one mole of hydrogen gas, therefore;
1 moles of potassium produces 1/2 mole of hydrogen gas, and 0.546 moles of potassium will produce 0.546/2 moles of hydrogen which is 0.273 moles of hydrogen gas
The molar mass of hydrogen gas = 2.016 grams
Therefore, 0.273 moles will have a mass of 0.273×2.016 = 0.551 grams.
The amount in grams of hydrogen gas produced = 0.551 grams.
Answer:
Energy, 
Explanation:
It is required to find the energy of an electromagnetic wave with a frequency of
. The energy of a wave in terms of its frequency is given by :

= frequency of em wave

So, the energy of an electromagnetic wave is 