Answer:
The ball moves from lowest to highest point:
W = M g h = 3 * 9.8 * 4 = 118 J
This is work done "against" gravity so work done by gravity is -118 J
The tension of the string does no work because the tension does not
move thru any distance W = T * x = 0 because the length of the string is fixed.
2.25 m/s² of acceleration is required to increase the speed of a car from 26 mi/h to 51 mi/h in 5 seconds.
To find the answer, we need to know about the acceleration.
<h3>What is acceleration?</h3>
- Acceleration is given as the ratio of velocity to time.
- Mathematically, acceleration= velocity/time.
<h3>What is the acceleration required to increase the speed of a car from 26 mi/h to 51 mi/h in 5 seconds?</h3>
- Here change in velocity of the car is 51-26= 25 mi/h.
- As 1 mi/h = 0.45 m/s. So 25mi/h = 11.25 m/s.
- Acceleration= (11.25m/s)/5s = 2.25 m/s².
Thus, we can conclude that the constant acceleration is 2.25 m/s².
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ4
Initial speed(u)=0m/s
Final speed(v)= 27m/s
Time(t)=7.6s
Use the equation of motion: v = u + at
27 = 0 + a(7.6)
27/7.6 = a
a = 3.55 m/s^2 (3 s.f)
Answer:
0.025 m
Explanation:
From the question,
Applying Hook's law
F = ke................... Equation 1
Where F = Force, k = spring constant of the scale, e = maximum distance at which the spring will compress.
make e the subject of the equation
e = F/k....................... Equation 2
Given: F = 10 N, e = 395 N/m
Substitute these values into equation 2
e = 10/395
e = 0.025 m
Answer:
Option (c)
Explanation:
Both the bullets have same acceleration because they both falls under the influence of acceleration due to gravity.
The bullet which is fired from the gun has some initial velocity but the bullet which is dropped has zero initial velocity.
the acceleration is acting on both the bullets which is equal to the acceleration due to gravity and they both in motion in the influence of gravity.