Answer:
2.79 °C/m
Explanation:
When a nonvolatile solute is dissolved in a pure solvent, the boiling point of the solvent increases. This property is called ebullioscopy. The temperature change (ΔT) can be calculated by:
ΔT = Kb*W*i
Where Kb is the ebullioscopy constant for the solvent, W is the molality and i is the van't Hoff factor.
W = m1/(M1*m2)
Where m1 is the mass of the solute (in g), M1 is the molar mass of the solute, and m2 is the mass of the solvent (in kg).
The van't Hoff factor represents the dissociation of the elements. For an organic molecule, we can approximate i = 1. Thus:
m1 = 2.00 g
M1 = 147 g/mol
m2 = 0.0225 kg
W = 2/(147*0.0225)
W = 0.6047 mol/kg
(82.39 - 80.70) = Kb*0.6047*1
0.6047Kb = 1.69
Kb = 2.79 °C/m
Answer:
all elements have a different atomic number
Explanation:
Atomic number of element does not affect their reactions with others
A solution that appears dark orange in color is not absorbing all orange wavelengths of light.
Answer:
Endothermic
Exothermic
Endothermic
Exothermic
Exothermic
Exothermic
Explanation:
Endothermic is when a reaction absorbs heat.
Exothermic is when a reaction releases heat.