Answer:
Kp = \frac{P(NH_{3}) ^{4} P(O_{2}) ^{5}}{P(NO) ^{4} P(H_{2}O)^{6}}
Explanation:
First, we have to write the balanced chemical equation for the reaction. Nitrogen monoxide (NO) reacts with water (H₂O) to give ammonia (NH₃) and oxygen (O₂), according to the following:
NO(g) + H₂O(g) → NH₃(g) + O₂(g)
To balance the equation, we add the stoichiometric coefficients (4 for NH₃ and NO to balance N atoms, then 6 for H₂O to balance H atoms and then 5 for O₂ to balance O atoms):
4 NO(g) + 6 H₂O(g) → 4 NH₃(g) + 5 O₂(g)
All reactants and products are in the gaseous phase, so the equilibrium constant is expressed in terms of partial pressures (P) and is denoted as Kp. The Kp is expressed as the product of the reaction products (NH₃ and O₃) raised by their stoichiometric coefficients (4 and 5, respectively) divided into the product of the reaction reagents (NO and H₂O) raised by their stoichiometric coefficients (4 and 6, respectively). So, the pressure equilibrium constant expression is written as follows:

The pressure of the gas in the flask (in atm) when Δh = 5.89 cm is 1.04 atm
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Atmospheric pressure (Pa) = 730.1 torr = 730.1 mmHg
- Change in height (Δh) = 5.89 cm
- Pressure due to Δh (PΔh) = 5.89 cmHg = 5.89 × 10 = 58.9 mmHg
- Pressure of gas (P) =?
<h3>How to determine the pressure of the gas</h3>
The pressure of the gas can be obtained as illustrated below:
P = Pa + PΔh
P = 730.1 + 58.9
P = 789 mmHg
Divide by 760 to express in atm
P = 789 / 760
P = 1.04 atm
Thus, the pressure of the gas when Δh = 5.89 cm is 1.04 atm
Learn more about pressure:
brainly.com/question/22523697
#SPJ1
Missing part of question:
See attached photo
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
ANSWER
EXPLANATION
Given that
The energy released by the system is 12.4J
Work done on the surrounding is 4.2J
Follow the steps below to find the change in energy
In the given data, energy is said to be released to the surroundings
Recall, that exothermic reaction is a type of reaction in which heat is released to the surroundings. Hence, change in enthalpy is negative
Step 1; Write the formula for calculating change in energy

Since heat is released to the surrounding, then q = -12J
Recall, that work done by the system on the surroundings is always negative
Hence, w = -4.2J
Step 2; Substitute the given data into the formula in step 1

Therefore, the change i