Δ H reaction = q / n where q: amount of heat released and n is number of moles of substance.
q = m . C . ΔT where:
m = mass of substance (g)
C = Specific heat capacity (4.18)
ΔT = change in temperature = 24.25 - 23.16 = 1.09
q = 1000 x 4.18 x 1.09 = 4556 J = 4.556 kJ
number of moles (n) = Molarity (M) x Volume (L)
= 0.185 M x 0.07 L = 0.01295 mole
Δ H = q / n = - (4.556 kJ / 0.01295 mole) = -351.8 kJ / mol
Note: it is exothermic reaction (-ve sign) i.e. temperature is raised
Answer:
gallium
Explanation:
it is the old melting in a hot cup of coffee spoon
Answer:
(d)
Explanation:
Carbonyl group can be the placement of kerosene sugar
The interaction which will occur when the non sticky tape pieces are turned towards each other is attraction.
<h3>What is Attraction?</h3>
This involves the coming together of objects as a result of a force. When non-sticky sides of the tape are brought towards each other attraction takes place due to the sticky content.
This however wears off after some time thereby making it the most appropriate choice.
Read more about Attraction here brainly.com/question/16033085
Answer:
2.94
Explanation:
There is some info missing. I think this is the original question.
<em>A solution is prepared at 25 °C that is initially 0.38 M in chloroacetic acid (HCH₂ClCO₂), a weak acid with Ka= 1.3 x 10⁻³, and 0.44 M in sodium chloroacetate (NaCH₂CICO₂). Calculate the pH of the solution. Round your answer to 2 decimal places.</em>
<em />
We have a buffer system formed by a weak acid (HCH₂ClCO₂) and its conjugate base (CH₂CICO₂⁻ coming from NaCH₂CICO₂). We can calculate the pH using the Henderson-Hasselbalch equation.
pH = pKa + log [CH₂CICO₂⁻]/[HCH₂ClCO₂]
pH = -log 1.3 x 10⁻³ + log (0.44 M/0.38 M)
pH = 2.94