1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yKpoI14uk [10]
3 years ago
5

A golfer tees off and hits a golf ball at a speed of 31 m/s and at an angle of 35 degrees. What is the horizontal velocity compo

nent of the ball? Round the answer to the nearest tenth of a m/s.
Physics
1 answer:
marishachu [46]3 years ago
6 0
To calculate the horizontal velocity component, use the cosine identity. where cos A = a / h
where A is the angle the golfer hits the ball
a is the horizontal component velocity
h is the speed the golfer hits the ball

so a = h cos A
a = 31 cos 35
a = 25.4 m/s
You might be interested in
Elements are organized on the periodic table based on their properties. Which statement correctly predicts and explains the chem
ExtremeBDS [4]

Answer:Rubidium or answer 1

Explanation:took quiz

7 0
2 years ago
A 0.12-kg metal rod carrying a current of current 4.1 A glides on two horizontal rails separation 6.3 m apart. If the coefficien
Neporo4naja [7]

Answer:

The magnetic field is B  =  8.20 *10^{-3} \  T

Explanation:

From the question we are told that

   The  mass of the metal rod is  m  = 0.12 \ kg

    The current on the rod is  I  = 4.1 \ A

    The distance of separation(equivalent to length of the rod ) is L   = 6.3 \ m

     The coefficient of kinetic friction is \mu_k  =  0.18

      The kinetic frictional force is  F_k  = 0.212 \ N

     The constant speed is v  = 5.1 \ m/s

Generally the magnetic force on the rod is mathematically represented as  

      F  =  B * I  *   L

For  the rod to move with a constant velocity the magnetic force must be equal to the kinetic frictional force so

        F_ k  =  B*  I  *  L

=>      B  =  \frac{F_k}{L  *  I  }

=>       B  =  \frac{0.212}{ 6.3   *  4.1   }

=>       B  =  8.20 *10^{-3} \  T

7 0
3 years ago
A friend of yours who has not taken an astronomy class looks at your textbook and really likes the picture of the Pleiades, a cl
Andrei [34K]

Answer:

<em>C. the blue colour of the Earth's sky</em>

<em></em>

Explanation:

The Pleiades is a cluster of sister stars that are among the closest star cluster to earth.

The reflection nebula of the Pleiades is due to the scattering of the blue light from the hot blue luminous stars that dominate the star cluster. Th blue light is scattered from dust molecules, thought to be predominantly carbon compound like diamond dusts, and other compounds like iron.

The blue colour of the Earth's sky is the closest terrestrial phenomenon to the reflection nebula. On a clear cloudless day, molecules in the air scatter the blue component of light more than the other component colours of white light, giving the sky its characteristic blue coluor.

The common characteristics of the luminous nebula and the Earth's blue sky is that they both have their light scattered by the presence of small particles.

8 0
3 years ago
To run a centrifuge correctly, you should:
ser-zykov [4K]
Balance tubes by spacing them equally around the centrifuge and Always balance tubes with other tubes containing a same volume of liquid are right. 
If you don't space them out equally, you will have a lot of broken glass to clean up...trust me. The same thing can happen if you don't have equal amounts of liquid in each tube, but it doesn't have to be exactly the same in every one.
7 0
3 years ago
Suppose the ball is thrown from the same height as in the PRACTICE IT problem at an angle of 32.0°below the horizontal. If it st
scoray [572]

The figure of the problem is missing: find in attachment.

(a) 1.64 s

The ball follows a projectile motion path. The horizontal displacement is given by

x(t) = v_0 cos \theta t

where

v_0 is the initial speed

t is the time

\theta=32.0^{\circ} is the angle below the horizontal

We can rewrite this equation as

t=\frac{x(t)}{v_0 cos \theta} (1)

The vertical displacement instead is given by

y(t) = -v_0 sin \theta t - \frac{1}{2}gt^2 (2)

where

g=9.8 m/s^2 is the acceleration of gravity

Substituting (1) into (2),

y(t) = -x(t) tan \theta - \frac{1}{2}gt^2

We know that for t = time of flight, the horizontal displacement is

x(t) =50.8 m

We also know that the vertical displacement is

y(t) = -45 m

Substituting everything into the equation, we can find the time of flight:

\frac{1}{2}gt^2=-y -x tan \theta\\t=\sqrt{\frac{2(-y-xtan \theta)}{g}}=\sqrt{\frac{2(-(-45)-50.8 tan 32.0^{\circ})}{9.8}}=1.64 s

(b) 36.5 m/s

We can now find the initial speed directly by using the equation for the horizontal displacement:

x(t) = v_0 cos \theta t

where we have

x = 50.8 m

\theta=32.0^{\circ}

Substituting the time of flight,

t = 1.64 s

We find:

v_0 = \frac{x}{t cos \theta}=\frac{50.8}{(1.64)(cos 32.0^{\circ})}=36.5 m/s

(c) 47.1 m/s at 48.8 degrees below the horizontal

As the ball follows a projectile motion, its horizontal velocity does not change, so its value remains equal to

v_x = v_0 cos \theta = (36.5)(cos 32.0^{\circ})=31.0 m/s

The initial vertical velocity is instead

u_y = -v_0 sin \theta = -(36.5)(sin 32.0^{\circ})=-19.3 m/s

And it changes according to the equation

v_y = u_y -gt

So at t = 1.64 s (when the ball hits the ground),

v_y = -19.3 - (9.8)(1.64)=-35.4 m/s

So the impact speed is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(31.0)^2+(-35.4)^2}=47.1 m/s

While the direction is:

\theta=tan^{-1}(\frac{v_y}{v_x})=tan^{-1}(\frac{-35.4}{31.0})=-48.8^{\circ}

8 0
3 years ago
Other questions:
  • If a ball is rolling across a floor at a constant speed is it accelerating
    10·1 answer
  • The total magnification of a specimen being viewed with a 10X ocular lens and a 40X objective lens is _____.
    10·1 answer
  • The logarithm of x, written log(x), tells you the power to which you would raise 10 to get x. So, if y=log(x), then x=10^y. It i
    14·1 answer
  • A cannon, located 60.0 m from the base of a vertical 25.0-m-tall cliff, shoots a 15-kg shell at 43.0o above the horizontal towar
    11·1 answer
  • a force of 250N is applied to an object that accelerates at a rate of 5 m/s^2. what is the mass of the object.
    10·1 answer
  • A 1.3 kgkg block slides along a frictionless surface at 1.3 m/sm/s . A second block, sliding at a faster 5.0 m/sm/s , collides w
    9·2 answers
  • This element has four valance electrons and four energy levels.
    9·1 answer
  • A 1,100 kg car comes uniformly to a stop. If the vehicle is accelerating at -1.2 m/s2, which force is closest to the net force a
    10·1 answer
  • Question 7 of 10
    9·1 answer
  • A 1500 kg elevator, suspended by a single cable with tension 16.0 kN, is measured to be moving upward at 1.2 m/s. Air resistance
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!