The moment of inertia is 
Explanation:
The total moment of inertia of the system is the sum of the moment of inertia of the rod + the moment of inertia of the two balls.
The moment of inertia of the rod about its centre is given by

where
M = 24 kg is the mass of the rod
L = 0.96 m is the length of the rod
Substituting,

The moment of inertia of one ball is given by

where
m = 50 kg is the mass of the ball
is the distance of each ball from the axis of rotation
So we have

Therefore, the total moment of inertia of the system is

Learn more about inertia:
brainly.com/question/2286502
brainly.com/question/691705
#LearnwithBrainly
Answer:
a) 
b) 
c) 
d) 
e)
&
f) 
Explanation:
From the question we are told that:
Stretch Length 
Mass 
Total stretch length
a)
Generally the equation for Force F on the spring is mathematically given by


b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

Where
A=Amplitude

And

Therefore


c)
Generally the equation for Max Acceleration of Mass on the spring is mathematically given by



d)
Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by



e)
Generally the equation for the period T is mathematically given by



Generally the equation for the Frequency is mathematically given by


f)
Generally the Equation of time-dependent vertical position of the mass is mathematically given by

Where
'= signify order of differentiation
Subatomic particles
Explanation:
Grand unification theory or GUT is a model that tries to describe the universe.
Answer:
Part a)

Part b)

So this speed is independent of the mass of the rider
Explanation:
Part a)
By force equation on the rider at the position of the hump we can say

now we will have


now we have



Part b)
At the top of the loop if the minimum speed is required so that it remains in contact so we will have

at minimum speed




So this speed is independent of the mass of the rider