Answer:
(A) -2940 J
(B) 392 J
(C) 212.33 N
Explanation:
mass of bear (m) = 25 kg
height of the pole (h) = 12 m
speed (v) = 5.6 m/s
acceleration due to gravity (g) = 9.8 m/s
(A) change in gravitational potential energy (ΔU) = mg(height at the bottom- height at the top)
height at the bottom = 0
= 25 x 9.8 x (0-12) = -2940 J
(B) kinetic energy of the Bear (KE) =
=
= 392 J
(C) average frictional force = 
- change in KE (ΔKE) = initial KE - final KE
- ΔKE =
-
- when the Bear reaches the bottom of the pole, the final velocity (Vf) is 0, therefore the change in kinetic energy becomes ΔKE =
- 0 = 392 J
\frac{-(ΔKE+ΔU)}{h}[/tex] =
=
= 212.33 N
The answers is A and C hope this helps :)
Answer:
The correct answer is D.
Non-sampling error is the error that results from under-coverage, non-response bias, response bias, or data-entry errors. Sampling error is the error that results because a sample is being used to estimate information about a population.
Explanation:
Sampling error is related to the variation between the true values of the sample and the population. If occurred, it is always random depending upon the sample chosen.
Non-sampling error can be random as well as non-random. Non-sampling error can occur irrespective of the sample chosen. It is related to the inappropriate analysis of the data.
Answer:
0.0605 Kg m^2
Explanation:
In this case where we have find he moment of inertia of this object about an axis perpendicular to the x-y plane and passing through the origin, we can just add three moment of inertia's .
MOI= 0.25×0.3^2 + 0.35×0.4^2- 0.45×0.2^2
= 0.0605 Kg m^2