Answer: -
1) 8.33 minutes
2) 118.39 in/ s
180.43 m/min
10.83 km/ hr
Explanation: -
Speed of light = 3 x 10⁸ m/s
Distance of the earth from the sun= 93 million miles
We know 1 million = 1,000,000
Also 1 mile = 1609 m
Distance of the earth from the sun= 93 million miles
= 93,000,000 miles.
= 1.5 x
m
Time taken = 
=
m}{3 x 10⁸ m/s} [/tex]
= 500 s
= 500/ 60
= 8.33 minutes
2) Distance = 1 mile = 63360 inches
Time taken = 8.92 min
= 8.92 x 60
= 535.2 s
Speed = 
= 
= 118.39 in/ s
Distance = 1 mile = 63360 inches = 63360 x 2.54 cm = 63360 x 2.54 x
m
Time taken = 8.92 min
Speed = 
=
m}{8.92 min} [/tex]
= 180.43 m/ min
1 m = 10⁻³ Km
1 min = 1/60 hour
1 m /min = 10⁻³ km/ 
= 60/1000
=0.06 km/hr
180.43 m / min = 180 x 0.06 km / hr
= 10.93 km / hr
Answer:

Explanation:
Henry's law states that the solubility of a gas is directly proportional to its partial pressure. The equation may be written as:

Where
is Henry's law constant.
Our strategy will be to identify the Henry's law constant for oxygen given the initial conditions and then use it to find the solubility at different conditions.
Given initially:

Also, at sea level, we have an atmospheric pressure of:

Given mole fraction:

According to Dalton's law of partial pressures, the partial pressure of oxygen is equal to the product of its mole fraction and the total pressure:

Then the equation becomes:

Solve for
:

Now we're given that at an altitude of 12,000 ft, the atmospheric pressure is now:

Apply Henry's law using the constant we found:

Answer:
Increase in height from the ground.
Explanation:
Potential energy =mass×acceleration due to gravity×height.
P.E= mgh
Answer:
i think it's C
Hope It Helps!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! :D