Answer:
<em>Gravity</em><em>.</em><em> </em><em>The</em><em> </em><em>weight-force</em><em> </em><em>or</em><em> </em><em>weight</em><em> </em><em>of</em><em> </em><em>an</em><em> </em><em>object</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>force</em><em> </em><em>because</em><em> </em><em>of</em><em> </em><em>Gravity</em><em>,</em><em> </em><em>which</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>the</em><em> </em><em>object</em><em> </em><em>attracting</em><em> </em><em>it</em><em> </em><em>towards</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>earth</em><em>.</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em>
Oceanographer? I think that is what it is.
Magnitude of displacement = 
Adding the squares gives displacement = 
Displacement =
≈ 724.7m
Answer:
Since the net force is to the right (in the direction of the applied force), then the applied force must be greater than the friction force. The friction force can be determined using an understanding of net force as the vector sum of all the forces.
Explanation:
Answer:
Explanation:
The work required to push will be equal to work done by friction . Let d be the displacement required .
force of friction = mg x μ where m is mass of the suitcase , μ be the coefficient of friction
work done by force of friction
mg x μ x d = 660
80 x 9.8 x .272 x d = 660
d = 3 .1 m .