<span>c) convection currents in the mantle </span>
Explanation:
The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given by :

We need to find the current flowing. We know that the rate of change of electric charge is called electric current. It is given by :

At t = 1 s,
Current,

So, the current at t = 1 s is 3 A.
For lowest current,

Hence, this is the required solution.
Answer:
there will be collision
Explanation:
= speed of sue = 34 m/s
= speed of van = 5.20 m/s
= speed of sue relative to van =
= 34 - 5.20 = 28.8 m/s
= stopping distance after brakes are applied
= distance between sue and van = 160 m
= final speed of sue = 0 m/s
= acceleration = - 1.80 m/s²
Using the kinematics equation


m
Since
hence there will be collision
Acceleration x time = velocity
Since you're given acceleration and time, just plug the values into the equation.
3

x 1.1 s = ?
Solve that equation, and remember your velocity should be in m/s.
<span>Density is 3.4x10^18 kg/m^3
Dime weighs 1.5x10^12 pounds
The definition of density is simply mass per volume. So let's divide the mass of the neutron star by its volume. First, we need to determine the volume. Assuming the neutron star is a sphere, the volume will be 4/3 pi r^3, so
4/3 pi 1.9x10^3
= 4/3 pi 6.859x10^3 m^3
= 2.873x10^10 m^3
Now divide the mass by the volume
9.9x10^28 kg / 2.873x10^10 m^3 = 3.44588x10^18 kg/m^3
Since we only have 2 significant digits in our data, round to 2 significant digits, giving 3.4x10^18 kg/m^3
Now to figure out how much the dime weighs, just multiply by the volume of the dime.
3.4x10^18 kg/m^3 * 2.0x10^-7 m^3 = 6.8x10^11 kg
And to convert from kg to lbs, multiply by 2.20462, so
6.8x10^11 kg * 2.20462 lb/kg = 1.5x10^12 lb</span>