Answer:
wavelength = 0.8989 m
Explanation:
Given data:
weight of wire is 8.25 g
length of wire is 65 cm
speed of sound in room is 344 m/s
time of returning of pulse is 7.84 ms
There are three time period
Time period 


velocity = wavelength × frequency
wavelength 

wavelength = 0.8989 m
Answer:

Explanation:
We are given that
Current=I=1.75 A
Resistance =R=55.4 ohm
Time=t=9.5 min=
1 min=60 s
We have to find the heat generated by the resistor.
We know that
Heat=E=
Using the formula
Heat,
Hence, the heat generated by the resistor =
Answer:
The work done by the hoop is equal to 5.529 Joules.
Explanation:
Given that,
Mass of the hoop, m = 96 kg
The speed of the center of mass, v = 0.24 m/s
To find,
The work done by the hoop.
Solution,
The initial energy of the hoop is given by the sum of linear kinetic energy and the rotational kinetic energy. So,

I is the moment of inertia, 
Since, 


Finally it stops, so the final energy of the hoop will be, 
The work done by the hoop is equal to the change in kinetic energy as :

W = -5.529 Joules
So, the work done by the hoop is equal to 5.529 Joules. Therefore, this is the required solution.
the equation of the tangent line must be passed on a point A (a,b) and
perpendicular to the radius of the circle. <span>
I will take an example for a clear explanation:
let x² + y² = 4 is the equation of the circle,
its center is C(0,0). And we assume that the tangent line passes to the point
A(2.3).
</span>since the tangent passes to the A(2,3), the line must be perpendicular to the radius of the circle.
<span>Let's find the equation of the line parallel to the radius.</span>
<span>The line passes to the A(2,3) and C (0,0). y= ax+b is the standard form of the equation. AC(-2, -3) is a vector parallel to CM(x, y).</span>
det(AC, CM)= -2y +3x =0, is the equation of the line // to the radius.
let's find the equation of the line perpendicular to this previous line.
let M a point which lies on the line. so MA.AC=0 (scalar product),
it is (2-x, 3-y) . (-2, -3)= -4+4x + -9+3y=4x +3y -13=0 is the equation of tangent