Answer:
d = V/E
Explanation:
From the definition, we can say that the electric field strength between the plates of a parallel plate capacitor is
E = v/d
where
E = electric field strength
V = potential difference
d = distance between the plates
On rearranging the equation and making d subject of the formula, we have
d = V/E
From the question, we're given that
V = 112 V
E = 1.12 kV/cm converting to V/m, we have 110000 V/cm
d = 112 / 110000
d = 0.00102 m
d = 1.02*10^-3 m
Answer: Heat will transfer from the water to the air. When a mass of air moves on a warmer surface it is heated by its base. Then thermal instability develops in the lower layers and then extends upwards. If the air initially contained inversions, these are destroyed and a strong gradient is established uniformly in the lower troposphere temperature.
Answer:
5.6*10^23. if 10^n is greater, that means its the larger value. hope dis helps
Explanation:
Answer:
5x10^-3
Explanation:
Hooke's Law states that the force needed to compress or extend a spring is directly proportional to the distance you stretch it.
Hooke's Law can be represented as
<h3> F = kx, </h3>
<em>where F is the force </em>
<em> k is the spring constant</em>
<em> x is the extension of the material </em>
<em />
Plug values in the equation
Step 1 find the original extension
0.045 = (400)x
x = 1.125x 10^-4 m d
Step 2 find the new extension
0.045+2 = 400(x)
2.045 = 400x
x = 5.1125x10^-3
Step 3 subtract the new extension with original
Total extension of the spring = 5.1125x10^-3 - 1.125x 10^-4 m = 5x10^-3
Answer:
A lone neutron spontaneously decays into a proton plus an electron.
Explanation:
In an atom, nuclei contain protons and neutrons, which are the fundamental particles of an atom. Neutrons are stable and uncharged particles inside a nucleus.
For 15 times during its lifetime, a free neutron decays and breaks down into more smaller particles.This breakdown causes problems in nuclear reactors, as they start decaying and emit radiations of different wavelengths.
A neutron undergoes the decaying process to produce an electron, a proton, and energy.
The reaction of neutron decay:
n0 → p+ + e− + νe