1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
3 years ago
7

A cruise ship made a trip to Guam and back. The trip there took 12 hours and the trip

Physics
1 answer:
Alecsey [184]3 years ago
6 0

Answer:

The average speed is 8.0 km/h

Explanation:

We use the data for the return journey to calculate the distance travelled using the constant velocity equation:

s  =  v  t  =6*4=24km

 

Note I didn't change any units so the answer comes out in kilometres.

Now use the distance and time taken to travel to Guam to find the average speed:

v=st=24/3=8.0km/h

You might be interested in
A 2 kg, frictionless block is attached to a horizontal, ideal spring with spring constant 300 N/m. At t = 0 the spring is neithe
schepotkina [342]

Answer:

Explanation:

Given that,

Mass of block

M = 2kg

Spring constant k = 300N/m

Velocity v = 12m/s

At t = 0, the spring is neither stretched nor compressed. Then, it amplitude is zero at t=0

xo = 0

It velocity is 12m/s at t=0

Then, it initial velocity is

Vo = 12m/s

Then, amplitude is given as

A = √[xo + (Vo²/ω²)]

Where

xo is the initial amplitude =0

Vo is the initial velocity =12m/s

ω is the angular frequency and it can be determine using

ω = √(k/m)

Where

k is spring constant = 300N/m

m is the mass of object = 2kg

Then,

ω = √300/2 = √150

ω = 12.25 rad/s²

Then,

A = √[xo + (Vo²/ω²)]

A = √[0 + (12²/12.5²)]

A = √[0 + 0.96]

A = √0.96

A = 0.98m

4 0
3 years ago
PLEASE ANSWER ASAP, WILL MARK BRAINLIEST***
Andreyy89
The answer is to your question is c
7 0
2 years ago
Bill is farsighted and has a near point located 121 cm from his eyes. Anne is also farsighted, but her near point is 74.0 cm fro
Arada [10]

Answer:

Explanation:

The lens equation is

1 / f = 1 / di + 1 / do

Where

f is focal length

di is the image distance

do is the object distance

Both Annie and Billy use a glass whose near point is 25cm

Then, the object distance is

do = 25 - 2 = 23cm

The have the same object distance.

Let find the vocal length of bills eye

Given that,

Bill near point is 121cm and distance of the glass from the eye is 2cm

Then,

Image distance of bill is

di_B = -(121-2) = -119cm

object distance do = 23cm

Then,

1 / f_B = 1 / di_B + 1 / do

1 / f_B = -1 / 119 + 1 / 23

1 / f_B = -119^-1 + 23^-1

1 / f_B = 0.0351

Then, f_B = 28.51 cm

Also, let find Annie focal length

Given that,

Annie near point is 74 cm and distance of the glass from the eye is 2cm

Then,

Image distance of Annie is

di_A = -(74-2) = -72cm

object distance do = 23cm

Then,

1 / f_A = 1 / di_A + 1 / do

1 / f_A = -1 / 72 + 1 / 23

1 / f_A = -72^-1 + 23^-1

1 / f_A = 0.02959

Then, f_A = 33.8 cm

Distance of object from the lens when Annie uses Billy glass

Then,

1 / f_B = 1 / di_A + 1 / do

1 / 28.51 = -1 / 72 + 1 / do

28.51^-1 = -72^-1 + do^-1

do^-1 = 28.51^-1 + 72^-1

do^-1 = 0.048964

do = 20.42 cm

Then, the object location from the eye will be, the eye is 2cm from the glass. Then,

do_A = 20.42 + 2 = 22.42cm

do_A = 22.42 cm

Distance of object from the lens when Billy uses Annie glass

Then,

1 / f_A = 1 / di_B + 1 / do

1 / 33.8 = -1 / 119 + 1 / do

33.8^-1 = -119^-1 + do^-1

do^-1 = 33.8^-1 + 119^-1

do^-1 = 0.03799

do = 26.32 cm

Then, the object location from the eye will be, the eye is 2cm from the glass. Then,

do_B = 26.32 + 2 = 28.32 cm

do_B = 28.32 cm

7 0
3 years ago
Help please hurry! ‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️
eimsori [14]
IV - Temperature
DV - Light intensity
8 0
3 years ago
A cyclical heat engine, operating between temperatures of 450º C and 150º C produces 4.00 MJ of work on a heat transfer of 5.00
gogolik [260]

Answer:

(a) Heat transfer to the environment is: 1 MJ and (b) The efficiency of the engine is: 41.5%

Explanation:

Using the formula that relate heat and work from the thermodynamic theory as:W=Q=Q_{in}-Q_{out} solving to Q_out we get:Q_{out}=Q_{in}-W=5(MJ)-4(MJ)=1(MJ) this is the heat out of the cycle or engine, so it will be heat transfer to the environment. The thermal efficiency of a Carnot cycle gives us: n=1-\frac{T_{Low} }{T_{High}} where T_Low is the lowest cycle temperature and T_High the highest, we need to remember that a Carnot cycle depends only on the absolute temperatures, if you remember the convertion of K=°C+273.15 so T_Low=150+273.15=423.15 K and T_High=450+273.15=723.15K and replacing the values in the equation we get:n=1-\frac{423.15}{723.15} =0.415=41.5%

5 0
3 years ago
Other questions:
  • A 10.0g piece of copper wire, sitting in the sun reaches a temperature of 80.0 C. how many Joules are released when the copper c
    12·1 answer
  • What does the slope of a distance-versus time graph show you about the motion of an object
    14·1 answer
  • (03.02 MC) Two students made the following statements to describe atmospheric conditions at a location. Student A: This area has
    9·1 answer
  • A rifle fires a 2.01 10-2-kg pellet straight upward, because the pellet rests on a compressed spring that is released when the t
    10·1 answer
  • A car is at velocity of 20 km/h. If the car traveled 120 km in 3 hours at constant acceleration, what is its final velocity?
    13·1 answer
  • Please help! <br><br><br> How did Jessica Kusher create her new material?
    6·2 answers
  • What are two equations for the energy of light? Identify each variable.
    6·1 answer
  • The cheetah is one of the fastest accelerating animals, for it can go from rest to 34.5 m/s in 3.57 s. If its mass is 112 kg, de
    13·1 answer
  • A student drove to the university from her home and noted that the odometer reading of her car increased by 12.0 km. The trip to
    13·1 answer
  • Two 8.0 Ω lightbulbs are connected in a 12 V parallel circuit. What is the power of both glowing bulbs?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!