<em></em>
Answer:
<u><em>The aufbau principle</em></u>
<u />
<u><em>The Pauli exclusion principle</em></u>
<u><em></em></u>
<u><em>Hund's rule of maximum multiplicity</em></u>
Explanation:
<u><em>The aufbau principle:</em></u>
<em></em>
The fundamental electronic configuration is achieved by placing the electrons one by one in the different orbitals available for the atom, which are arranged in increasing order of energy.
<u><em>The Pauli exclusion principle:</em></u>
<em></em>
Two electrons of the same atom cannot have their four equal quantum numbers. Because each orbital is defined by the quantum numbers n, l, and m, there are only two possibilities ms = -1/2 and ms = +1/2, which physically reflects that each orbital can contain a maximum of two electrons, having opposite spins
<u><em>Hund's rule of maximum multiplicity:</em></u>
This rule says that when there are several electrons occupying degenerate orbitals, of equal energy, they will do so in different orbitals and with parallel spins, whenever this is possible. Because electrons repel each other, the minimum energy configuration is one that has electrons as far away as possible from each other, and that is why they are distributed separately before two electrons occupy the same orbital.
<span>The particles through which compressional waves travel move in the same direction as the wave. This may be observed by fixing one end of a large spring and then compressing and extending the other end. The wave travels from one end to the other and the spring's parts move in the same direction.</span>
Explanation:
the force acting perpendicularly on unit area of surface
- unit=pascle .
For the answer to the question above, on Earth, a one-pound object has a mass of about 0.453592 kilograms.
<span>Therefore the man's mass is 155 * 0.453592 = 70.30676 kilograms. </span>
<span>The part about the Moon's gravity is irrelevant. While the weight of a person or object would be different on the Moon, the mass would be the same.</span>
Answer:
A. Two tennis balls that are near each other
Explanation:
The formula for gravitational force (F) between two objects is

where m₁ and m₂ are the masses of the two objects, d is the distance between their centres, and G is the gravitational constant.
Thus, two objects that are far from each other will have a smaller gravitational force. We can eliminate Options C and D.
If the objects are at the same distance, those with the smaller mass will have a smaller force.
The mass of a tennis ball is 57 g.
The mass of a soccer ball is 430 g.
Two tennis balls that are near each other will have a smaller gravitational attraction.