Answer:
Mike can travel 80 Km in 4 hours
Answer:
a) 4 289.8 J
b) 4 289.8 J
c) 6 620.1 N
d) 411 186.3 m/s^2
e) 6 620.1 N
Explanation:
Hi:
a)
The kinetic energy of the bullet is given by the following formula:
K = (1/2) m * v^2
With
m = 16.1 g = 1.61 x 10^-2 kg
v = 730 m/s
K = 4 289.8 J
b)
the work-kinetic energy theorem states that the work done on a system is the same as the differnce in kinetic energy of the same. Since the initial state of the bullet was at zero velocity (it was at rest) Ki = 0, therefore:
W = ΔK = Kf - Ki = 4 289.8 J
c)
The work done by a force is given by the line intergarl of the force along the trayectory of the system (in this case the bullet).
If we consider a constant force (and average net force) directed along the trayectory of the bullet, the work and the force will be realted by:
W = F * L
Where F is the net force and L is the length of the barrel, that is:
F = (4 289.8 J) / (64.8 cm) = (4 289.8 Nm) / (0.648 m) = 6620.1 N
d)
The acceleration can be found dividing the force by the mass:
a = F/m = (6620.1 N) /(16.1 g) = 411 186.3 m/s^2
e)
The force will have a magnitude equal to c) and direction along the barrel towards the exit
<u>Increase the thickness of the wire</u> would decrease the resistance in a wire
Explanation:
Thicker wires have a larger cross-section that increases the surface area with which electrons can flow unimpeded. The thicker the wire, therefore, the lower the resistance.
Thin wires have very high resistance the reason the thin tungsten in a bulb glows because it is heated from the high resistance of many electrons trying to pass through a very small cross-section.