Answer:
k = 1.3 x 10⁻³ s⁻¹
Explanation:
For a first order reaction the integrated rate law is
Ln [A]t/[A]₀ = - kt
where [A] are the concentrations of acetaldehyde in this case, t is the time and k is the rate constant.
We are given the half life for the concentration of acetaldehyde to fall to one half its original value, thus
Ln [A]t/[A]₀ = Ln 1/2[A]₀/[A]₀= Ln 1/2 = - kt
- 0.693 = - k(530s) ⇒ k = 1.3 x 10⁻³ s⁻¹
Answer:
C₆H₈O₆
Explanation:
First off, the<u> percent of oxygen by mass</u> of vitamin C is:
- 100 - (40.9+4.58) = 54.52 %
<em>Assume we have one mol of vitamin C</em>. Then we would have <em>180 grams</em>, of which:
- 180 * 40.9/100 = 73.62 grams are of Carbon
- 180 * 4.58/100 = 8.224 grams are of Hydrogen
- 180 * 54.52/100 = 98.136 grams are of Oxygen
Now we <u>convert each of those masses to moles</u>, using the <em>elements' respective atomic mass</em>:
- C ⇒ 73.62 g ÷ 12 g/mol = 6.135 mol C ≅ 6 mol C
- H ⇒ 8.224 g ÷ 1 g/mol = 8.224 mol H ≅ 8 mol H
- O ⇒ 98.136 g ÷ 16 g/mol = 6.134 mol O ≅ 6 mol O
So the molecular formula for vitamin C is C₆H₈O₆
Answer:
2 electrons
Explanation:
Oxygen has 6 valence electrons and to be stable it needs 8. That means it needs 2 more electrons to have a full octet.