Answer:
A safety margin is the space left between your vehicle and the next to provide room, time and visibility at every instant
Explanation:
A safety margin is defined as an allowance given between your vehicle and the next vehicle in front to provide enough room, visibility and time to move in a safe manner to prevent the occurrence of an accident at anytime the frontal vehicle suddenly stops or slows down
Safety margins help minimize risks in the following way
1) A common knowledge of safety margins, improves predictability among road users, thereby minimizing the risk traffic accidents caused due to late communication
2) The use of safety margins helps minimize the risk due to a change in driving conditions such as when the road becomes more slippery from being covered with fluid that is being wetted
3) Safety margin can help prevent the occurrence of an accident between vehicles due to failure of a car system, such as a punctured tire or failed breaking system
4) Safety margin helps to protect road users from the introduction of obstacles on the main roads such as ongoing road construction, broken down vehicles, road blockage by vehicles involved in an accident etc
5) Safety margin help protect road users from being involved in an accident due to the loss of driving focus of the driver of the frontal vehicle
Answer:
Class of fit:
Interference (Medium Drive Force Fits constitute a special type of Interference Fits and these are the tightest fits where accuracy is important).
Here minimum shaft diameter will be greater than the maximum hole diameter.
Medium Drive Force Fits are FN 2 Fits.
As per standard ANSI B4.1 :
Desired Tolerance: FN 2
Tolerance TZone: H7S6
Max Shaft Diameter: 3.0029
Min Shaft Diameter: 3.0022
Max Hole Diameter:3.0012
Min Hole Diameter: 3.0000
Max Interference: 0.0029
Min Interference: 0.0010
Stress in the shaft and sleeve can be considered as the compressive stress which can be determined using load/interference area.
Design is acceptable If compressive stress induced due to selected dimensions and load is less than compressive strength of the material.
Explanation:
Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut +
..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 -
) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 -
)
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R =
..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 = ![\frac{65^2}{15(e+0.10)}](https://tex.z-dn.net/?f=%5Cfrac%7B65%5E2%7D%7B15%28e%2B0.10%29%7D)
solve it we get
e = 2%
Answer:
Maximum Normal Stress σ = 8.16 Ksi
Maximum Shearing Stress τ = 4.08 Ksi
Explanation:
Outer diameter of spherical container D = 17 ft
Convert feet to inches D = 17 x 12 in = 204 inches
Wall thickness t = 0.375 in
Internal Pressure P = 60 Psi
Maximum Normal Stress σ = PD / 4t
σ = PD / 4t
σ = (60 psi x 204 in) / (4 x 0.375 in)
σ = 12,240 / 1.5
σ = 8,160 P/in
σ = 8.16 Ksi
Maximum Shearing Stress τ = PD / 8t
τ = PD / 8t
τ = (60 psi x 204 in) / (8 x 0.375 in)
τ = 12,240 / 3
τ = 4,080 P/in
τ = 4.08 Ksi