1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
3 years ago
10

Microchips found inside most electronic devices today are examples of what material A. Polymers B. Alloys C. Composites D. None

of the above. E. Metals
Engineering
2 answers:
dedylja [7]3 years ago
6 0

Answer: A

Explanation:

Microchips are made out of silicone witch is a polymer.

natta225 [31]3 years ago
4 0

Answer:

its a

Explanation:

You might be interested in
A saturated 1.5 ft3 clay sample has a natural water content of 25%, shrinkage limit (SL) of 12% and a specific gravity (GS) of 2
Svetllana [295]

79 f t^{3} is the volume of the sample when the water content is 10%.

<u>Explanation:</u>

Given Data:

V_{1}=100\ \mathrm{ft}^{3}

First has a natural water content of 25% = \frac{25}{100} = 0.25

Shrinkage limit, w_{1}=12 \%=\frac{12}{100}=0.12

G_{s}=2.70

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,

V \propto[1+e]

\frac{V_{2}}{V_{1}}=\frac{1+e_{2}}{1+e_{1}}  ------> eq 1

e_{1}=\frac{w_{1} \times G_{s}}{S_{r}}

The above equation is at S_{r}=1,

e_{1}=w_{1} \times G_{s}

Applying the given values, we get

e_{1}=0.25 \times 2.70=0.675

Shrinkage limit is lowest water content

e_{2}=w_{2} \times G_{s}

Applying the given values, we get

e_{2}=0.12 \times 2.70=0.324

Applying the found values in eq 1, we get

\frac{V_{2}}{100}=\frac{1+0.324}{1+0.675}=\frac{1.324}{1.675}=0.7904

V_{2}=0.7904 \times 100=79\ \mathrm{ft}^{3}

7 0
3 years ago
A Geostationary satellite has an 8kW RF transmission pointed at the earth. How much force does that induce on the spacecraft? (N
soldier1979 [14.2K]

Answer:

The force induced on the aircraft is 2.60 N

Solution:

As per the question:

Power transmitted, P_{t} = 8 kW = 8000 W

Now, the force, F is given by:

P_{t} = Force(F)\times velocity(v) = Fv               (1)

where

v = velocity

Now,

For a geo-stationary satellite, the centripetal force, F_{c} is provided by the gravitational force, F_{G}:

F_{c} = F_{G}

\frac{mv^{2}}{R} = \frac{GM_{e}m{R^{2}}

Thus from the above, velocity comes out to be:

v = \sqrt{\frac{GM_{e}}{R}}

v = \sqrt{\frac{6.67\times 10^{- 11}\times 5.979\times 10^{24}}{42166\times 10^{3}}} = 3075.36 m/ s

where

R = R_{e} + H

R = \sqrt{GM_{e}(\frac{T}{2\pi})^{2}}

where

G = Gravitational constant

T = Time period of rotation of Earth

R is calculated as 42166 km

Now, from eqn (1):

8000 = F\times 3075.36

F = 2.60 N

6 0
3 years ago
A transmission line with an imperfect dielectric is connected to an ideal time-invariant voltage generator. The other end of the
kari74 [83]

Answer and Explanation:

O decreases linearly with the distance from the generator

4 0
3 years ago
If 5000 N of thrust is acting to the left, and 4300 N of drag is acting to the right, what is the magnitude and direction of the
Kipish [7]

Answer:

700 N acting to the left.

8 0
3 years ago
An automobile weighing 2500 lbf increases its gravitational potential energy by a magnitude of 2.25 × 104 Btu in going from an e
Mila [183]

Answer:

The elevation at the high point of the road is 12186.5 in ft.

Explanation:

The automobile weight is 2500 lbf.

The automobile increases its gravitational potential energy in 2.25 * 10^4 BTU. It means the mobile has increased its elevation.

The initial elevation is of 5183 ft.  

The first step is to convert Btu of potential energy to adequate units to work with data previously presented.

British Thermal Unit - 1 BTU = 778.17  lbf*ft

2.25 * 10^4 BTU (\frac{778.17 lbf*ft}{1BTU} ) = 1.75 * 10^7 lbf * ft

Now we have the gravitational potential energy in lbf*ft. Weight of the mobile is in lbf and the elevation is in ft. We can evaluate the expression for gravitational potential energy as follows:  

Ep = m*g*(h_2 - h_1)\\ W = m*g  

Where m is the mass of the automobile, g is the gravity, W is the weight of the automobile showed in the problem.  

h_2 is the final elevation and h_1 is the initial elevation.

Replacing W in the Ep equation

Ep = W*(h_2 -h_1)\\(h_2 -h_1) = \frac{Ep}{W} \\h_2 = h_1 + \frac{Ep}{W}\\\\

Finally, the next step is to replace the variables of the problem.  

h_2 = 5183 ft + \frac{1.75 * 10^7 lbf*ft}{2500 lbf}\\h_2 = 5183 ft + 70003.5 ft\\h_2 = 12186.5 ft

The elevation at the high point of the road is 12186.5 in ft.  

3 0
3 years ago
Other questions:
  • How do you make coke for steel?
    14·1 answer
  • The amount of time an activity can be delayed and yet not delay the project is termed:_________
    14·1 answer
  • The normal stress at gage H calculated in Part 1 includes four components: an axial component due to load P, σaxial, P, a bendin
    9·1 answer
  • An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner’s 2.00 T field with his f
    5·1 answer
  • Sam, a carpenter, is asked to identify the abilities he has that are important to his work. What are the top abilities he might
    9·2 answers
  • Global Convection Patterns include which of the following?
    12·1 answer
  • Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
    9·1 answer
  • How do guest room hotel smoke alarms work and differ then regular home versions?
    10·2 answers
  • Work to be performed can come from the work package level of the work breakdown structure as well as other sources. Which of the
    11·1 answer
  • What is a beta testing ?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!