1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
3 years ago
10

P2O5 is a covalent compound used to purify sugar. What is the name of this compound?

Physics
2 answers:
AfilCa [17]3 years ago
8 0

Answer:

B) Diphosphorus pentoxide

Explanation:

tigry1 [53]3 years ago
5 0

Answer:

diphosphorus pentoxide

Explanation:

just checked it!! <3 gl

You might be interested in
YO CAN ANYONE DO THE BLANK COLUMN AND THE QUESTION PART RQ PLS!!
VikaD [51]

Answer:

stryo:  1

wood: 1

ice: 1

brick: 2

aluminum: 2.7

Explanation:

d= mass/ total volume

(fyi: for aluminum, they did the subtraction wrong to find the total volume. it is actually 5 or 5.00)

6 0
3 years ago
In the final situation below, the 8.0 kg box has been launched with a speed of 10.0 m/s across a frictionless surface. Find the
Murljashka [212]

Answer:

the energy of the spring at the start is 400 J.

Explanation:

Given;

mass of the box, m = 8.0 kg

final speed of the box, v = 10 m/s

Apply the principle of conservation of energy to determine the energy of the spring at the start;

Final Kinetic energy of the box = initial elastic potential energy of the spring

K.E = Ux

¹/₂mv² = Ux

¹/₂ x 8 x 10² = Ux

400 J = Ux

Therefore, the energy of the spring at the start is 400 J.

8 0
3 years ago
Continuous sinusoidal perturbation Assume that the string is at rest and perfectly horizontal again, and we will restart the clo
Elena-2011 [213]

a) 3.14 \cdot 10^{-4} s

b) See plot attached

c) 10.0 m

d) 0.500 cm

Explanation:

a)

The position of the tip of the lever at time t is described by the equation:

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t] (1)

The generic equation that describes a wave is

y(t)=A sin (\frac{2\pi}{T} t) (2)

where

A is the amplitude of the wave

T is the period of the wave

t is the time

By comparing (1) and (2), we see that for the wave in this problem we have

\frac{2\pi}{T}=2.00\cdot 10^4 s^{-1}

Therefore, the period is

T=\frac{2\pi}{2.00\cdot 10^4}=3.14 \cdot 10^{-4} s

b)

The sketch of the profile of the wave until t = 4T is shown in attachment.

A wave is described by a sinusoidal function: in this problem, the wave is described by a sine, therefore at t = 0 the displacement is zero, y = 0.

The wave than periodically repeats itself every period. In this sketch, we draw the wave over 4 periods, so until t = 4T.

The maximum displacement of the wave is given by the value of y when sin(...)=1, and from eq(1), we see that this is equal to

y = 0.500 cm

So, this is the maximum displacement represented in the sketch.

c)

When standing waves are produced in a string, the ends of the string act as they are nodes (points with zero displacement): therefore, the wavelength of a wave in a string is equal to twice the length of the string itself:

\lambda=2L

where

\lambda is the wavelength of the wave

L is the length of the string

In this problem,

L = 5.00 m is the length of the string

Therefore, the wavelength is

\lambda =2(5.00)=10.0 m

d)

The amplitude of a wave is the magnitude of the maximum displacement of the wave, measured relative to the equilibrium position.

In this problem, we can easily infer the amplitude of this wave by looking at eq.(1).

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t]

And by comparing it with the general equation of a wave:

y(t)=A sin (\frac{2\pi}{T} t)

In fact, the maximum displacement occurs when the sine part is equal to 1, so when

sin(\frac{2\pi}{T}t)=1

which means that

y(t)=A

And therefore in this case,

y=0.500 cm

So, this is the displacement.

6 0
3 years ago
A physics student of mass 43.0 kg is standing at the edge of the flat roof of a building, 12.0 m above the sidewalk. An unfriend
Dmitry_Shevchenko [17]

Answer:

The speed of the student just before she lands, v₂ is approximately 8.225 m/s

Explanation:

The given parameters are;

The mass of the physic student, m = 43.0 kg

The height at which the student is standing, h = 12.0 m

The radius of the wheel, r = 0.300 m

The moment of inertia of the wheel, I = 9.60 kg·m²

The initial potential energy of the female student, P.E.₁ = m·g·h₁

Where;

m = 43.0 kg

g = The acceleration due to gravity ≈ 9.81 m/s²

h = 12.0 h

∴ P.E.₁ = 43 kg × 9.81 m/s² × 12.0 m = 5061.96 J

The kinetic rotational energy of the wheel and kinetic energy of the student supporting herself from the rope she grabs and steps off the roof, K₁, is given as follows;

K_1 = \dfrac{1}{2} \cdot m \cdot v_{1}^2+\dfrac{1}{2} \cdot I \cdot \omega_{1}^2

The initial kinetic energy, 1/2·m·v₁² and the initial kinetic rotational energy, 1/2·m·ω₁² are 0

∴ K₁ = 0 + 0 = 0

The final potential energy of the student when lands. P.E.₂ = m·g·h₂ = 0

Where;

h₂ = 0 m

The final kinetic energy, K₂, of the wheel and student is give as follows;

K_2 = \dfrac{1}{2} \cdot m \cdot v_{2}^2+\dfrac{1}{2} \cdot I \cdot \omega_{2}^2

Where;

v₂ = The speed of the student just before she lands

ω₂ = The angular velocity of the wheel just before she lands

By the conservation of energy, we have;

P.E.₁ + K₁ = P.E.₂ + K₂

∴ m·g·h₁ + \dfrac{1}{2} \cdot m \cdot v_{1}^2+\dfrac{1}{2} \cdot I \cdot \omega_{1}^2 = m·g·h₂ + \dfrac{1}{2} \cdot m \cdot v_{2}^2+\dfrac{1}{2} \cdot I \cdot \omega_{2}^2

Where;

ω₂ = v₂/r

∴ 5061.96 J + 0 = 0 + \dfrac{1}{2} \times 43.0 \, kg \times v_{2}^2+\dfrac{1}{2} \times 9.60 \, kg\cdot m^2 \cdot \left (\dfrac{v_2}{0.300 \, m} }\right ) ^2

5,061.96 J = 21.5 kg × v₂² + 53.\overline 3 kg × v₂² = 21.5 kg × v₂² + 160/3 kg × v₂²

v₂² = 5,061.96 J/(21.5 kg + 160/3 kg) ≈ 67.643118 m²/s²

v₂ ≈ √(67.643118 m²/s²) ≈ 8.22454363 m/s

The speed of the student just before she lands, v₂ ≈ 8.225 m/s.

5 0
3 years ago
What temperature is required to transfer waste heat to the environment for a heat engine to be 100 percent efficient?
OLEGan [10]
This can be seen as a trick question because heat engines can typically never be 100 percent efficient. This is due to the presence of inefficiencies such as friction and heat loss to the environment. Even the best heat engines can only go up to around 50% efficiency.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Two sections, A and B, are 0.5 km apart along a 0.05 m diameter rough concrete pipe. A is 115 m higher than B, the water tempera
    14·1 answer
  • A 1,500 kg truck is towed sideways out of a mud-hole with a force of 15,000 N. How much acceleration is required for the tow tru
    8·1 answer
  • How to do this question?​
    7·1 answer
  • The charges of two particles are as follows: Q1=2 x 10 -8 C and Q2 = 3 x 10 -7 C. Find the magnitude of the force between these
    14·1 answer
  • Brainliest brainliest help help help mememememememme
    10·2 answers
  • Why do the north and south poles of these magnets attract each other? A. The magnetic fields of the two magnets repel each other
    15·2 answers
  • 1. Lauren’s SUV was detected exceeding the posted speed limit of 60 kilometers per hour, how many kilometers per hour would she
    14·1 answer
  • How is the atomic mass of an atom determined?​
    11·1 answer
  • Which is an example of current electricity?
    11·1 answer
  • A roller coaster is released from the top of a track that is 57 m high. Find the roller coaster speed when it reaches ground lev
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!