Answer:
The answer to your question is:
Explanation:
Data
mass = 4.33 kg
E = 41.7 J
v = ?
Formula
Ke = (1/2)mv²
Clear v from the equation
v = √2ke/m
Substitution
v = √2(41.7)/4.33
v = 19.26 m/s Result
Given that:
Energy of bulb (Work ) = 30 J,
Time (t) = 3 sec
The power consumption = ?
We know that, Power can be defined as rate of doing work
Power (P) = Work(Energy supplied) ÷ time
= 30 ÷ 3
= 10 Watts
<em> The power consumption is 10 W.</em>
Answer:
The correct answer is B
Explanation:
To calculate the acceleration we must use Newton's second law
F = m a
a = F / m
To calculate the force we use the defined pressure and the radiation pressure for an absorbent surface
P = I / c absorbent surface
P = F / A
F / A = I / c
F = I A / c
The area of area of a circle is
A = π r²
We replace
F = I π r² / c
Let's calculate
F = 8.0 10⁻³ π (1.0 10⁻⁶)²/3 10⁸
F = 8.375 10⁻²³ N
Density is
ρ = m / V
m = ρ V
m = ρ (4/3 π r³)
m = 4500 (4/3 π (1 10⁻⁶)³)
m = 1,885 10⁻¹⁴ kg
Let's calculate the acceleration
a = 8.375 10⁻²³ / 1.885 10⁻¹⁴
a = 4.44 10⁻⁹ m/s² absorbent surface
The correct answer is B
But rocks are not unchangeable! Just like the water cycle, rocks undergo changes of form in a rock cycle. A metamorphic rock can become an igneous rock, or a sedimentary rock can become a metamorphic one. Unlike the water cycle, you can’t see the process happening on a day-to-day basis. Rocks change very slowly under normal conditions, but sometimes catastrophic events like a volcanic eruption or a flood can speed up the process. So what are the three types of rocks, and how do they change into each other? Keep reading to find out!