1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
3 years ago
6

Consider a 400 mm × 400 mm window in an aircraft. For a temperature difference of 90°C from the inner to the outer surface of th

e window, calculate the heat loss rate through L = 12-mm-thick polycarbonate, soda lime glass, and aerogel windows, respectively. The thermal conductivities of the aerogel and polycarbonate are kag = 0.014 W/m ⋅ K and kpc = 0.21 W/m ⋅ K, respectively.
Evaluate the thermal conductivity of the soda lime glass at 300 K. If the aircraft has 130 windows and the cost to heat the cabin air is $1/kW ⋅ h, compare the costs associated with the heat loss through the windows for an 8-hour intercontinental fight.
Engineering
1 answer:
Sergeeva-Olga [200]3 years ago
6 0

Answer:

HEAT LOST

polycarbonate = 252 W

soda lime glass = 1680 W

aerogel = 16.8 W

COST associated with heat loss

polycarbonate = $ 262.08

soda lime glass =  $ 1,747.2

aerogel =  $ 17.472

The cost associated with heat loss is maximum in Soda Lime and minimum in Aerogel

Explanation:

Given that;

surface area for each window = 0.4m * 0.4m = 0.16m^2

DeltaT = 90°C, L = 12mm = 0.012m

thermal conductivity of soda line can be gotten from tables in FUNDAMENTALS OF HEAT AND MASS TRANSFER

so at 300K

KsL = 1.4 W/mK

Kag = 0.014 W/mK

Kpc = 0.21 W/mK

Now HEAT LOSS

for polycarbonate;

Qpc  = -KA dt/dx

NOTE (  heat flows from high temperature region to low temperature regions. so the second temperature would be smaller compared to the initial causing a negative in the change in temperature)

so Qag  = (0.21 * 0.16 * 90) / 0.012

= 252 W

for soda lime glass;

Qsl  = (1.4 * 0.16 * 90) / 0.012

= 1680 W

for aerogel

Qaq  = (0.014 * 0.16 * 90) / 0.012

= 16.8 W

Now for COST associated with heat lost

for polycarbonate;

cost = Qpc * 130 * 8 * 1/1000

= 252 * 130 * 8 * 1/1000

= $ 262.08

for soda lime glass;

cost = 1680 * 130 * 8 * 1/1000

= $ 1,747.2

for aerogel

cost = 16.8 * 130 * 8 * 1/1000

= $ 17.472

Therefore the cost associated with heat loss is maximum in Soda Lime and minimum in Aerogel

You might be interested in
Ti-6Al-4V has a fracture toughness of 74.6 MPa-m0.5. How much stress (in MPa) would it take to fail a plate loaded in tension th
Nikitich [7]

Answer:

critical stress  = 595 MPa

Explanation:

given data

fracture toughness =  74.6 MPa-\sqrt{m}

crack length = 10 mm

f = 1

solution

we know crack length = 10 mm  

and crack length = 2a as given in figure attach

so 2a = 10

a = 5 mm

and now we get here with the help of plane strain condition , critical stress is express as

critical stress  = \frac{k}{f\sqrt{\pi a}}    ......................1

put here value and we get

critical stress  = \frac{74.6}{1\sqrt{\pi 5\times 10^{-3}}}

critical stress  = 595 MPa

so here stress is change by plane strain condition because when plate become thinner than condition change by plane strain to plain stress.

plain stress condition occur in thin body where stress through thickness not vary by the thinner section.

6 0
3 years ago
Which kind of fracture (ductile or brittle) is associated with each of the two crack propagation mechanisms?
Nina [5.8K]

dutile is the correct answer

6 0
3 years ago
Which of the following would not be considered hot work? A chipping B soldering C
tankabanditka [31]
I believe the answer is D: brazing
Hope this helps you have a good night
5 0
3 years ago
P10.12. A certain amplifier has an open-circuit voltage gain of unity, an input resistance of and an output resistance of The si
klio [65]

complete question

A certain amplifier has an open-circuit voltage gain of unity, an input resistance of 1 \mathrm{M} \Omega1MΩ and an output resistance of 100 \Omega100Ω The signal source has an internal voltage of 5 V rms and an internal resistance of 100 \mathrm{k} \Omega.100kΩ. The load resistance is 50 \Omega.50Ω. If the signal source is connected to the amplifier input terminals and the load is connected to the output terminals, find the voltage across the load and the power delivered to the load. Next, consider connecting the load directly across the signal source without the amplifier, and again find the load voltage and power. Compare the results. What do you conclude about the usefulness of a unity-gain amplifier in delivering signal power to a load?

Answer:

3.03 V  0.184 W

2.499 mV  125*10^-9 W

Explanation:

First, apply voltage-divider principle to the input circuit: 1

V_{i}= (R_i/R_i+R_s) *V_s = 10^6/10^6+(0.1*10^6)\\*5

    = 4.545 V

The voltage produced by the voltage-controlled source is:

A_voc*V_i = 4.545 V

We can find voltage across the load, again by using voltage-divider principle:  

V_o = A_voc*V_i*(R_o/R_l+R_o)

      = 4.545*(100/100+50)

      = 3.03 V  

Now we can determine delivered power:  

P_L = V_o^2/R_L

      = 0.184 W

Apply voltage-divider principle to the circuit:  

V_o = (R_o/R_o+R_s)*V_s

       = 50/50+100*10^3*5

       = 2.499 mV

Now we can determine delivered power:  

P_l = V_o^2/R_l

     = 125*10^-9 W

Delivered power to the load is significantly higher in case when we used amplifier, so a unity gain amplifier can be useful in situation when we want to deliver more power to the load. It is the same case with the voltage, no matter that we used amplifier with voltage open-circuit gain of unity.  

4 0
3 years ago
The heat required to raise the temperature of m (kg) of a liquid from T1 to T2 at constant pressure is Z T2CpT dT (1) In high sc
a_sh-v [17]

Answer:

(a)

<em>d</em>Q = m<em>d</em>q

<em>d</em>q = C_p<em>d</em>T

q = \int\limits^{T_2}_{T_1} {C_p} \, dT   = C_p (T₂ - T₁)

From the above equations, the underlying assumption is that  C_p remains constant with change in temperature.

(b)

Given;

V = 2L

T₁ = 300 K

Q₁ = 16.73 KJ    ,   Q₂ = 6.14 KJ

ΔT = 3.10 K       ,   ΔT₂ = 3.10 K  for calorimeter

Let C_{cal} be heat constant of calorimeter

Q₂ = C_{cal} ΔT

Heat absorbed by n-C₆H₁₄ = Q₁ - Q₂

Q₁ - Q₂ = m C_p ΔT

number of moles of n-C₆H₁₄, n = m/M

ρ = 650 kg/m³  at 300 K

M = 86.178 g/mol

m = ρv = 650 (2x10⁻³) = 1.3 kg

n = m/M => 1.3 / 0.086178 = 15.085 moles

Q₁ - Q₂ = m C_p' ΔT

C_p = (16.73 - 6.14) / (15.085 x 3.10)

C_p = 0.22646 KJ mol⁻¹ k⁻¹

6 0
3 years ago
Other questions:
  • A section of a two-lane highway has 12-ft lanes and a design speed of 75 mi/h. The section contains a vertical curve and a horiz
    9·1 answer
  • Time complexity of merge sort
    15·1 answer
  • A natural-draft cooling tower receives 250,000 ft3/min of air at standard atmospheric pressure, 70oF, and 45 percent relative hu
    8·1 answer
  • I WILL GIVE BRAINLIEST IF ANSWER FAST What is the measurement on this Dial Caliper?
    9·1 answer
  • Might give brainliest
    8·1 answer
  • What is the maximal coefficient of performance of a refrigerator which cools down 10 kg of water (and then ice) to -6C. Upper he
    11·1 answer
  • You apply a force of 19 lbs on to the end of a lever to lift a crate. The resistance of the load is 106 lbs. Calculate the
    13·1 answer
  • What is the heart of a set of construction drawing?
    10·1 answer
  • What is it that makes a battery rechargeable? How is it different from a regular battery?
    14·2 answers
  • A protocol is a set of rules or procedures, usually written, that should be followed in specific situations. Which of the follow
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!