Answer:
potential enrgy U = m g L sin θ
speed V = √(2g L sin θ)
Explanation:
The expression for the gravitational potential energy of a body is
U = mg Y - mg Yo
Where Y give us a constant initial energy from which the differences are measured, for general simplicity it is selected as zero, Yo= 0
What we find an expression for height, let's use trigonometry
sin θ= Y / L
Y = l sin θ
We substitute in the power energy equation
U = m g L sin θ
2. The mechanical energy of the system is conserved, so we will write the mechanical energy at two points the highest and the lowest
Highest Em = U
Lower Em = K
U = K
m g L sin θ = ½ m v²
V = √(2g L sin θ)
The net force on the boy is zero.
Based on this analysis, I would expect the boy to <u>not accelerate</u>.
Isn't velocity Distance over time? if the degree isn't adding resistance it should be 4000 ÷ 20 which gives you 200mps ("per second") which is the velocity without resistance.
Answer:
Explanation:
Electric flux is defined as the flow of electric field intensity through a given surface.
Mathematically:

where:
E = electric field
A = area
θ = angle between the area vector and the electric field
Electric flux through the surface of a sphere will be uniform throughout the surface area due to a charge at the center of the sphere. The distance of the surface from the center is always at a constant distance of radius of the sphere.
Electric flux through the surface of a cube will be varying as the surface area is at a varying distance from the center of the cube. The distance of the surface from the center is not at a uniform distance from the center of the cube and so the projection of solid angle changes.