1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weqwewe [10]
3 years ago
14

The same motor is used in rockets with different masses. The rockets have different accelerations. According to Newton’s second

law, how is acceleration expected to change as the rocket mass increases? As rocket mass increases, acceleration decreases. There are no changes in acceleration, as it would depend on the amount of force. As rocket mass increases, acceleration increases. Acceleration cannot be predicted based on changes in mass.
Physics
1 answer:
tiny-mole [99]3 years ago
5 0

Answer:

As rocket mass increases, acceleration decreases.

Explanation:

From Newton's second law of motion;

F= ma

Where;

m= mass of the object

a= acceleration of the object

Hence we can write;

a= F/m

This implies that an increase in mass (m) will lead to a decrease in acceleration if the force on the object is held constant.

Hence, if the rockets have different masses, they will have different accelerations.

You might be interested in
Elizabeth has always believed that people's thoughts can help heal them. She wants to help people use positive thinking to posit
Murrr4er [49]

Answer: Family

Explanation:

7 0
3 years ago
18. What do you call a change in state from a liquid to a gas?
Ket [755]

Answer:

evaporation

Explanation:

5 0
3 years ago
Read 2 more answers
Less force is required to poke through an eggshell from the _____.
meriva
I believe the answer is A. hope this helps :)
8 0
3 years ago
A photoelectric effect experiment finds a stopping potential of 1.93 V when light of wavelength 200 nm is used to illuminate the
GenaCL600 [577]

a) Zinc (work function: 4.3 eV)

The equation for the photoelectric effect is:

E=\phi + K (1)

where

E=\frac{hc}{\lambda} is the energy of the incident photon, with

h = Planck constant

c = speed of light

\lambda = wavelength

\phi = work function of the metal

K = maximum kinetic energy of the photoelectrons emitted

The stopping potential (V) is the potential needed to stop the photoelectrons with maximum kinetic energy: so, the corresponding electric potential energy must be equal to the maximum kinetic energy,

eV=K

So we can rewrite (1) as

E=\phi + eV

where we have:

\lambda=200 nm = 2\cdot 10^{-7} m

V = 1.93 V

e is the electron charge

First of all, let's find the energy of the incident photon:

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{2\cdot 10^{-7}m}=9.95\cdot 10^{-19} J

Converting into electronvolts,

E=\frac{9.95\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=6.22 eV

And now we can solve eq.(1) to find the work function of the metal:

\phi = E-eV=6.22 eV-1.93 eV=4.29 eV

so, the metal is most likely zinc, which has a work function of 4.3 eV.

b) The stopping potential is still 1.93 V

Explanation:

The intensity of the incident light is proportional to the number of photons hitting the surface of the metal. However, the energy of the photons depends only on their frequency, so it does not depend on the intensity of the light. This means that the term E in eq.(1) does not change.

Moreover, the work function of the metal is also constant, since it depends only on the properties of the material: so \phi is also constant in the equation. As a result, the term (eV) must also be constant, and therefore V, the stopping potential, is constant as well.

6 0
3 years ago
A cellist tunes the C string of her instrument to a fundamental frequency of 65.4 Hz. The vibrating portion of the string is 0.5
Dahasolnce [82]

Answer:

a

\lambda  = 1.18 \  m

b

v  =  77.172 \  m/s

c

T  = 151.41 \  N

Explanation:

From the question we are told that

   The frequency is  f =  65.4 \  Hz

   The  length of the vibrating string is  L  =  0.590 \  m

   The  mass is  m  =  15.0 \ g  =  0.015 \  kg

Generally the wavelength is mathematically represented as

           \lambda =  2 *  L

=>        \lambda  =  2 *   0.590

=>         \lambda  = 1.18 \  m

Generally the wave speed is  

          v  =  \lambda  *  f

=>       v  =  1.18 * 65.4

=>       v  =  77.172 \  m/s

Generally the tension on the wire is mathematically represented as

        T  =  v^2  *  \frac{ m }{L }

=>      T  =  77.172 ^2  *  \frac{  0.015  }{0.590}

=>      T  = 151.41 \  N

7 0
3 years ago
Other questions:
  • Is intelligent design science
    5·1 answer
  • One of relatively few reactions that takes place directly between two solids at roo temperature is
    5·1 answer
  • Which of these discoveries is generally attributed to kepler?
    14·1 answer
  • Ice cubes,icicles,snowflakes, and glaciers are water in..
    13·2 answers
  • How have human factors contributed to climate change, and what evidence supports these factors?
    6·2 answers
  • Alisha uses wire to connect a battery, a lightbulb, and a switch, but the bulb does not light up even though the switch is in th
    15·1 answer
  • Elements in compounds are held together by chemical what
    9·1 answer
  • How does a physicist answer a specific question
    5·1 answer
  • Will give correct answer brainliest
    6·1 answer
  • Calculate the change in the kinetic energy (KE) of the bottle when the mass is increased. Use the formula
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!