The correct answer is shown in option 3. Water and hydrochloric acid are polar molecules. These molecules are polar because of the presence of bonds that are partially ionic or polar covalent bonds. Other examples are hydrogen fluoride and ammonia.
Answer:
a. 5.36x10⁻⁴ g/mL
b. 4.29x10⁻⁵ g/mL
Explanation:
As the units for concentration are not specified, I'll respond using g/mL.
a. We <em>divide the sample mass by the final volume</em> in order to <u>calculate the concentration</u>:
- 0.268 g / 500 mL = 5.36x10⁻⁴ g/mL
b. We can use C₁V₁=C₂V₂ for this question:
- 8.00 mL * 5.36x10⁻⁴ g/mL = C₂ * 100.00 mL
Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
<span>Celsius scale: 100 degrees.
Fahrenheit scale: 180 degrees.</span>