Answer:
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Explanation:
Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.
Substituting the values of the variables into the equation, we have
ΔV = V₂ - V₁.
ΔV = 175 V - 33 V.
ΔV = 142 V
The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.
So, substituting the values of the variables into the equation, we have
ΔU = eΔV
ΔU = eΔV
ΔU = -1.602 × 10⁻¹⁹ C × 142 V
ΔU = -227.484 × 10⁻¹⁹ J
ΔU = -2.27484 × 10⁻²¹ J
ΔU ≅ -2.275 × 10⁻²¹ J
So, the required equation for the electric potential energy change is
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Answer:
Hypothesis
Explanation:
Refer to a trial solution to a problem as a hypothesis, often called an "educated guess" because it provides a suggested outcome based on the evidence.
Answer:
45 m / s North is a valid vector reading for an object.
Explanation:
Then velocity will be defined by x km / hr North. And, magnitude of velocity defines the speed of the body. Although this tells the speed, but there is no description for the direction, so it's not a vector reading
The magnitude of the electrostatic force between two charges is given by:

where
ke is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
We can see that the magnitude of the force is directly proportional to the charges. This means that when one of the charges is doubled, the magnitude of the electrostatic force will double as well, so the correct answer is
A) <span>The magnitude of the electrostatic force doubles</span>
Answer:
A. Remove everything in the refrigerator to lighten the load.
B. Put a lubricant between the surface of the object and the floor
C. Use round objects, like pencils , to decrease the friction and push the refrigerator over the pencils more easily
Explanation:
Force of friction is a resistance force which acts between two surfaces which are in relative motion. Friction is both boon and bane. Due to friction, we are able to sit, walk etc but also, due to friction there is dissipation of energy. Friction can be reduced by applying lubricants, reducing contact area, reducing the load.
F = μN where N is the normal force which depends on the mass.
Thus, by reducing the load, force of friction can be reduced. Round objects like wheels can also be used. By this the contact area reduces.