<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890.
For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time.
Add the two times together for the total.
The alternative is to calculate the initial and final velocity so that you have more information to work with.
In the offensive role, the players try to get a goal.
In the defensive roll, The players try to protect the goal
Hoped this helped a little :)
Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2
The correct answer is letter A. 6 millimeters. <span>If an object 18 millimeters high is placed 12 millimeters from a diverging lens and the image is formed 4 millimeters in front of the lens, the height of the image is 6 millimeters.
</span>
Solution:
18 / x = 12 / 4
12x = 72
x = 6mm
Respuesta: verifique amablemente la explicación
Explicación:
Dado lo siguiente:
Longitud (L) del cable = 120 m
Diámetro (d) = 2,2 mm (2,2 / 1000) = 2,2 * 10 ^ -3 m
Fuerza (F) = 380 N
Esfuerzo longitudinal = Fuerza / Área
Área = πd² / 4 = (π * (2.2 * 10 ^ -3) ^ 2) / 4
Área = (3.142 * 4.84 * 10 ^ -6)
Área = 0.00000380132 m²
Estrés = Fuerza / Área
Estrés = 380 / 0.00000380132
Esfuerzo longitudinal = 99952128.12 = 9.9952128 * 10^7 Nm^-2
Deformación longitudinal: extensión / longitud
Extensión = 0.10 m
Longitud = 120 m
Deformación longitudinal = 0,1 m / 120 m
Deformación longitudinal = 0.0008333 = 8.33 × 10 ^ -4