Answer:
released if the laser is used 0.056 s during the surgery
Explanation:
First, you have to calculate the energy of each photon according to Einstein's theoty, given by:

Where
is the wavelength,
is the Planck's constant and
is the speed of light
-> Planck's constant
-> Speed of light
So, replacing in the equation:

Then, the energy of each released photon by the laser is:
After, you do the inverse of the energy per phothon and as a result, you will have the number of photons in a Joule of energy:
The power of the laser is 1.1 W, or 1.1 J/s, that means that you can calculate how many photons the laser realease every second:

And by doing a simple rule of three, if
are released every second, then in 0.056 s:
are released during the surgery
The force constant is 2.145 N/m.
<h3>What is spring constant?</h3>
- The spring constant is the force required to stretch or compress a spring divided by the distance traveled by the spring. It is used to determine whether a spring is stable or unstable.
- K is the proportionality constant, also known as the 'spring constant.' Hooke's law (F = -kx) specifies stiffness and strength via the k variable. The greater the value of k, the greater the force required to stretch an object to a given length.
Using the relation;
T = 2π√m/k
T = time period = 0.45 s
m = mass of object in kilograms = 0.011kg
k = spring constant
To find k based on the formula,
k = 4 × (3.142)^2 × 0.011 / (0.45 )^2
k = 2.145 N/m
Therefore the force constant is 2.145 N/m.
To learn more about force refer to :
brainly.com/question/12785175
#SPJ4
I believe it is acceleration!
Well, there you have a very important principle wrapped up in that question.
There's actually no such thing as a real, actual amount of potential energy.
There's only potential <em><u>relative to some place</u></em>. It's the work you have to do
to lift the object from that reference place to wherever it is now. It's also
the kinetic energy the object would have if it fell down to the reference place
from where it is now.
Here's the formula for potential energy: PE = (mass) x (gravity) x (<em><u>height</u></em><u>)</u> .
So naturally, when you use that formula, you need to decide "height above what ?"
If you're reading a book while you're flying in a passenger jet, the book's PE is
(M x G x 0 meters) relative to your lap, (M x G x 1 meter) relative to the floor of the
plane, (M x G x 10,000 meters) relative to the ground, and maybe (M x G x 25,000 meters)
relative to the bottom of the ocean.
Let's say that gravity is 9.8 m/s² .
Then a 4kg block sitting on the floor has (39.2 x 0 meters) PE relative to the floor
it's sitting on, also (39.2 x 3 meters) relative to the floor that's one floor downstairs,
also (39.2 x 30 meters) relative to 10 floors downstairs, and if it's on the top floor of
the Amoco/Aon Center in Chicago, maybe (39.2 x 345 meters) relative to the floor
in the coffee shop that's off the lobby on the ground floor.