Answer:
The design-limiting property that insufficiently large is the elastic modulus (Young modulus)
Explanation:
Plastic usually have a relatively low elastic modulus, this couses the material to deform too much under stress. In the case of a bicycle, a little weight you put on it or little bumps will cause the bicycle to deform too much.
Answer:

Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ =
= 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than
and greater than
at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

Now, we will find
(enthalpy at the outlet for the isentropic process):

Now, the isentropic efficiency of the turbine can be given as follows:

Answer:
The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.
Explanation:
For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.
Q = π(ΔPR⁴/8μL)
where Q = volumetric flowrate
ΔP = Pressure drop across the pipe
μ = fluid viscosity
L = pipe length
If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe
ΔP = μ(8QL/πR⁴)
ΔP = Kμ
K = (8QL/πR⁴) = constant (for this question)
ΔP = Kμ
K = (ΔP/μ)
So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).
μ₁ = (μ/2)
The new pressure drop (ΔP₁) is then
ΔP₁ = Kμ₁ = K(μ/2)
Recall,
K = (ΔP/μ)
ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)
Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.
Hope this Helps!!!
Answer:
Bending stress at point 3.96 is \sigma_b = 1.37 psi
Explanation:
Given data:
Bending Moment M is 4.176 ft-lb = 50.12 in- lb
moment of inertia I = 144 inc^4
y = 3.96 in

putting all value to get bending stress

Bending stress at point 3.96 is
= 1.37 psi
Answer:
MRR = 1.984
Explanation:
Given that
Depth of cut ,d=0.105 in
Diameter D= 1 in
Speed V= 105 sfpm
feed f= 0.015 ipr
Now the metal removal rate given as
MRR= 12 f V d
d= depth of cut
V= Speed
f=Feed
MRR= Metal removal rate
By putting the values
MRR= 12 f V d
MRR = 12 x 0.015 x 105 x 0.105
MRR = 1.984
Therefore answer is -
1.944