1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tom [10]
3 years ago
12

The velocity field of a flow is given by where x and y are in feet. Determine the fluid speed at points along the x axis; along

the y axis. What is the angle between the velocity vector and the x axis at points 15, 52, and 10, 52
Engineering
2 answers:
lora16 [44]3 years ago
6 0

Answer:

Using the formula

V =20y/(x^2+y^2)^1/2 - 20x/(x^2+y^2)^1/2

Hence fluid speed at x axis =20x/(x^2+y^2)^1/2

While the fluid speed at y axis =20y/(x^2+y^2)^1/2

Now the angle at 1, 5

We substitute into the formula above

V= 20×5/(1+25)^1/2= 19.61

For x we have

V = 20× 1/(1+25)^1/2= 3.92

Angle = 19.61/3.92= 5.0degrees

Angel at 5, and 2

We substitute still

V = 20×5/(2+25)^1/2=19.24

At 2 we get

V= 20×2/(2+25)^1/2=7.69

Dividing we get 19.24/7.69=2.5degrees

At 1 and 0

V = 20/(1)^1/2=20

At 0, v =0

Angel at 2 and 0 = 20degrees

At 5 and 2

V = 100/(25+ 4)^1/2=18.56

At x = 2

40/(√29)=7.43

Angle =18.56/7.43 = 2.49degrees.

kotykmax [81]3 years ago
5 0

There is a part of the question missing and it says;

The velocity field of a flow is given by V = [20y/(x² + y²)^(1/2)]î − [20x/(x² + y²)^(1/2)] ĵ ft/s, where x and y are in feet.

Answer:

A) At (1,5),angle is -11.31°

B) At (5,2),angle is -68.2°

C) At (1,0), angle is -90°

Explanation:

From the question ;

V = [20y/(x² + y²)^(1/2)]î − [20x/(x² + y²)^(1/2)] ĵ ft/s

Let us assume that u and v are the flow velocities in x and y directions respectively.

Thus we have the expression;

u = [20y/(x² + y²)^(1/2)]

and v = - [20x/(x² + y²)^(1/2)]

Thus, V = √(u² + v²)

V = √[20y/(x² + y²)^(1/2)]² + [-20x/(x² + y²)^(1/2)]²

V = √[400y²/(x²+y²)] +[400x²/(x²+y²)

V = √(400x² + 400y²)/(x²+y²)

Now for the angle;

tan θ = opposite/adjacent

And thus, in this question ;

tan θ = v/u

tan θ = [-20x/(x² + y²)^(1/2)]/ [20y/(x² + y²)^(1/2)]

Simplifying this, we have;

tan θ = - 20x/20y = - x/y

so the angle is ;

θ = tan^(-1)(-x/y)

So let's now find the angle at the various coordinates.

At, 1,5

θ = tan^(-1)(-1/5) = tan^(-1)(-0.2)

θ = -11.31°

At, 5,2;

θ = tan^(-1)(-5/2) = tan^(-1)(-2.5)

θ = -68.2°

At, 1,0;

θ = tan^(-1)(-1/0) = tan^(-1)(-∞)

θ = -90°

At,

You might be interested in
A 20.0 µF capacitor is charged to a potential difference of 800 V. The terminals of the charged capacitor are then connected to
Sergeu [11.5K]

Answer:

a) Q_initial = 16 * 10^-3 C

b) V_1 = V_2 =  (16/3) * 10^2 V

c)  E = 64/15 J

d)  dE = 32/15 J of decrease

Explanation:

Given:

- Capacitor 1, C_1 = 20.0 uF

- Capacitor 2, C_2 = 10.0 uF

- Charged with P.d V = 800 V

Find:

a) the original charge of the system,

(b) the final potential difference across each capacitor

(c) the final energy of the system

(d) the decrease in energy when the capacitors are connected.

Solution:

a)

- The initial charge in the circuit is the one carried by the first charged capacitor.

                           Q_initial = C_1*V

                           Q_initial = 20*10^-6 * 800

                           Q_initial = 16 * 10^-3 C

b)

- After charging the other capacitor, we know that the total charge is conserved among two capacitor:

                          Q_initial = Q_1 + Q_2

- We also know that potential difference across two capacitor is also same.

                          V_1 = V_2 = Q_1 / C_1 = Q_2 / C_2

- Using the two equations and solve for charge Q_2:

                          Q_2 = Q_1*C_2/C_1

                          Q_2 = Q_1*10/20 = 0.5*Q_1

- using conservation of charge:

                          Q_initial = 1.5*Q_1

                          Q_1 = 16*10^-3 / 1.5 = 10.67*10^-3 C

- Hence the Voltage across each capacitor is:

                          V_2 = V_1 = Q_1 / C_1  

                                            = 10.67*10^-3 / 20*10^-6

                                            = (16/3) * 10^2 V

c)

- The energy in the system is:

                          E = 0.5*C_eq*V^2

Where, C_eq is the equivalent capacitance of paralle circuit.

                           E = 0.5*(20+10)*10^-6 *((16/3) * 10^2)^2

                          E = 64/15 J

d)

- The decrease in energy of the capacitors is:

                           dE = E_initial - E_final

Where, E_initial is due to charging of the C_1 only:

                          dE = 0.5*10^-6*20*800^2 - (64/15)

                          dE = 32/5 - 64/15 = 32/15 J

5 0
3 years ago
State the mathematical expression to define the availability of equipment over a specified time and operational availability?
Gelneren [198K]

Answer:

Availability=\dfrac{Up\ time}{Down\ time+Up\ time}

Explanation:

Availability:

  It define as the probability of system which perform desired task before showing any failure .

The availability can be define as follows

 Availability=\dfrac{Up\ time}{Down\ time+Up\ time}

Or we can say that

Availability=\dfrac{Up\ time}{total\ time}

Availability can also be express as

 Availability=\dfrac{MTBF}{MTBF+MTTR}

Where MTBF is the mean time between two failure.

MTTR is the mean time to repair.

7 0
2 years ago
There is an electric field near the Earth's surface whose magnitude is about 145 V/m . How much energy is stored per cubic meter
weqwewe [10]

Answer:

u_e = 9.3 * 10^-8 J / m^3  ( 2 sig. fig)

Explanation:

Given:

- Electric Field strength near earth's surface E = 145 V / m

- permittivity of free space (electric constant) e_o =  8.854 *10^-12 s^4 A^2 / m^3 kg

Find:

- How much energy is stored per cubic meter in this field?

Solution:

- The solution requires the energy density stored between earth's surface and the source of electric field strength. The formula for charge density is given by:

                                        u_e = 0.5*e_o * E^2

- Plug in the values given:

                                        u_e = 0.5*8.854 *10^-12 *145^2

                                        u_e = 9.30777 * 10^-8  J/m^3

5 0
3 years ago
This problem has been solved!
lisov135 [29]

Answer: a) 135642 b) 146253

Explanation:

A)

1- the bankers algorithm tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, as stated this has the greatest degree of concurrency.

3- reserving all resources in advance helps would happen most likely if the algorithm has been used.

5- Resource ordering comes first before detection of any deadlock

6- Thread action would be rolled back much easily of Resource ordering precedes.

4- restart thread and release all resources if thread needs to wait, this should surely happen before killing the thread

2- only option practicable after thread has been killed.

Bii) ; No. Even if deadlock happens rapidly, the safest sequence have been decided already.

5 0
2 years ago
Water flows through a pipe at an average temperature of T[infinity] = 70°C. The inner and outer radii of the pipe are r1 = 6 cm
Paul [167]

Answer:

The differential equation and the boundary conditions are;

A) -kdT(r1)/dr = h[T∞ - T(r1)]

B) -kdT(r2)/dr = q'_s = 734.56 W/m²

Explanation:

We are given;

T∞ = 70°C.

Inner radii pipe; r1 = 6cm = 0.06 m

Outer radii of pipe;r2 = 6.5cm=0.065 m

Electrical heat power; Q'_s = 300 W

Since power is 300 W per metre length, then; L = 1 m

Now, to the heat flux at the surface of the wire is given by the formula;

q'_s = Q'_s/A

Where A is area = 2πrL

We'll use r2 = 0.065 m

A = 2π(0.065) × 1 = 0.13π

Thus;

q'_s = 300/0.13π

q'_s = 734.56 W/m²

The differential equation and the boundary conditions are;

A) -kdT(r1)/dr = h[T∞ - T(r1)]

B) -kdT(r2)/dr = q'_s = 734.56 W/m²

6 0
2 years ago
Other questions:
  • The water in a large lake is to be used to generate electricity by the installation of a hydraulic turbine-generator at a locati
    7·1 answer
  • A small family home in Tucson, Arizona has a rooftop area of 2667 square feet, and it is possible to capture rain falling on abo
    5·1 answer
  • A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures. This cylinder has a 90mm OD, a 1.65
    8·1 answer
  • 4. At what temperature does an engine run cleanest with least wear?
    11·1 answer
  • Our rule-of-thumb for presenting final results is to round to three significant digits or four if the first digit is a one. By t
    12·1 answer
  • Lars is a medical coder. He works for a hospital in Wisconsin but currently lives in Georgia. Lars does his work online and over
    13·1 answer
  • The minimum recommended standards for the operating system, processor, primary memory (RAM), and storage capacity for certain so
    12·2 answers
  • As a worker in this field you would:
    5·1 answer
  • 7. If you can't ignore a distraction, what should you do?
    15·1 answer
  • Oil, with density of 900 kg/m3 and kinematic viscosity of 0.00001 m2/s, flows at 0.2 m3/s through 500 m of 200-mm-diameter cast-
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!