Answer: Rn :)))) no explanation needed
Answer:
Solid materials that do not possess an orderly arrangement of atoms are called glasses (mineraloids).
Explanation:
A Mineraloid is a natural, inorganic, amorphous (lacking "defined chemical composition") solid body that does not exhibit crystallinity. It exhibits characteristics similar to those of minerals, but does not have the "ordered atomic structure" necessary to meet the definition of a mineral.
Glasses or colloids have a totally random structure on an atomic scale. They are amorphous and get the honorary name of mineraloid.
<u><em>Solid materials that do not possess an orderly arrangement of atoms are called glasses (mineraloids).</em></u>
<span>This is best understood with Newtons Third Law of Motion: for every action there is an equal and opposite reaction. That should allow you to see the answer.</span>
Answer:
300m/s
Explanation:
velocity = frequency(wavelength)
Since 10 waves pass a point each second, frequency is 10
therefore, speed = (10)(30 = 300m/s
Answer:
the distance from charge A to C is r₁₃= 1.216 m
Explanation:
following Coulomb's law , the force exerted by 2 point charges between themselves is:
F= k*q₁*q₂/r₁₂² , where q is charge , r is distance and 1 and 2 represents the charge A and charge B respectively , k=constant
since C ( denoted as 3) is at equilibrium
F₁₃=F₂₃
k*q₁*q₃/r₁₃²=k*q₂*q₃/r₂₃²
q₁/r₁₃²=q₂/r₂₃²
r₁₃²/q₁=r₂₃²/q₂
r₂₃=r₁₃*√(q₂/q₁)
since C is at rest and is co linear with A and B ( otherwise it would receive a net force in either vertical or horizontal direction) , we have
r₁₃+r₂₃=d=r₁₂
r₁₃+r₁₃*√(q₂/q₁)=d
r₁₃*(1+√(q₂/q₁))=d
r₁₃=d/(1+√(q₂/q₁))
replacing values
r₁₃=d/(1+√(q₂/q₁)) = 3.00 m/(1+√(3.10 C/1.44 C)) = 1.216 m
thus the distance from charge A to C is r₁₃= 1.216 m