<u>Answer:</u> The half life of the reaction is 1190.7 seconds
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
k = rate constant of the reaction = 
= half life of the reaction = ?
Putting values in above equation, we get:

Hence, the half life of the reaction is 1190.7 seconds
Answer:
Increasing the temperature will cause chemical changes to occur faster. Decreasing the temperature, causes the particles to lose energy which causes them to move around less and slower. The less they move, the less collisions occur, and the less reactions occur between the chemicals = slower reaction rate.
Explanation:
Answer:
HNO3 is a potent acid, a base, a nitrating agent and a heavy oxidising agent at times. In the presence of a stronger acid, it serves as a base.
Explanation:
For example, at sea level the atmospheric pressure is 760 mm Hg<span> (also expressed as 760 torr, 101325 Pa, 101.3 kPa, 1013.25 mbar or 14.696 psi) and pure </span>water<span> boils at 100°C. However, in Calgary (approx. 1050m above sea level) the atmospheric pressure is approximately 670 </span>mm Hg<span>, and </span>water<span> boils at about 96.6°C.</span>
Data:
Q = 402.7 J → releases → Q = - 402.7 J
m = 16.25 g
T initial = 54 ºC
adopting: c = 4.184J/g/°C
ΔT (T final - T initial) = ?
Solving:
Q = m*c*ΔT
-402.7 = 16.25*4.184*ΔT
-402.7 = 67.99*ΔT


If: ΔT (T final - T initial) = ?

