The answer would be true so you would know which way it was going and how fast it was moving towards you
Answer:
611.064 kJ
Explanation:
Given :
m = 200 mL = 200 g
Specific heat of ice = 2.06 J/g°C
Q = mcΔt
Δt = 0 - (-22) = 22
Q1 = 200 * 2.06 * 22 = 9064 J
Q2 = Melt 0 °C solid ice into 0 °C liquid water:
Q2 = m · ΔHf ; ΔHf = heat of fusion of water = 334j/g
Q2 = 200 * 334 = 66800 J
Q3 : Heat to convert from 0°C to 100°C
Q3 = mcΔt ; c = 4.19 J/g°C ; Δt = (100 - 0) = 100
Q3 = 200 * 4.19 * 100 = 83800 J
Q4: heat required to boil water to steam
Q = m · ΔHv
Hv = heat of vaporization of water = 2257 J/g
Q4 = 200 * 2257 = 451400 J
Total Q = Q1 + Q2 + Q3 + Q4
Q = 9064 + 66800 + 83800 + 451400
Q = 611,064 Joules
Q = 611.064 kJ
Left and right to a point called ad focal point after passing through convex lens
Answer:
d. Its magnitude and its direction both remained the same.
Explanation:
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
This ultimately implies that, the law of conservation of momentum states that if objects exert forces only on each other, their total momentum is conserved.
In this scenario, a rubber ball moving at a speed of 5 m/s hit a flat wall and returned to the thrower at 5 m/s. Thus, the statement which correctly describes the momentum of the rubber ball is that its magnitude and its direction both remained the same because its velocity didn't change while returning to the thrower.