B. The rate of particle collisions increased with a higher temperature.
An <em>inference </em>is a guess that you make <em>based on an observation</em>. You can’t see the particles, so you are guessing (a) that they exist and (b) that the rate of their collisions increases with a higher temperature.
A, C, and D are all incorrect because they are <em>observations</em> that you make.
Technically speaking, yes you can. Using a microscope though.
Answer:
4 moles of neon
Explanation:
Given data:
Number of moles of neon = ?
Number of atoms of neon = 2.4×10²⁴ atoms
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For given neon atoms:
1 mol = 6.022 × 10²³ atoms
2.4×10²⁴ atoms × 1 mol / 6.022 × 10²³ atoms
0.4×10¹ mol = 4 mol
Answer:
Iron(III) Oxide
Explanation:
You can tell that this formula is for the molecule Iron(III) oxide because it has two iron atoms and three oxygen atoms.
Fun Fact: There are three main types of iron oxides, with this being one of them.
Hope this helped! :^)
Evaporation,condensation,precipitation,sublimation,transpirtation,runoff and infiltration