C. 23 pairs
There are a total of 46 chromosomes
H2O (water) has 2 hydrogen atoms and 1 oxygen atom.
Answer:
102g
Explanation:
To find the mass of ethanol formed, we first need to ensure that we have a balanced chemical equation. A balanced chemical equation is where the number of atoms of each element is the same on both sides of the equation (reactants and products). This is useful as only when a chemical equation is balanced, we can understand the relationship of the amount (moles) of reactant and products, or to put it simply, their relationship with one another.
In this case, the given equation is already balanced.

From the equation, the amount of ethanol produced is twice the amount of yeast present, or the same amount of carbon dioxide produced. Do note that amount refers to the number of moles here.
Mole= Mass ÷Mr
Mass= Mole ×Mr
<u>Method 1: using the </u><u>mass of glucose</u>
Mr of glucose
= 6(12) +12(1) +6(16)
= 180
Moles of glucose reacted
= 200 ÷180
=
mol
Amount of ethanol formed: moles of glucose reacted= 2: 1
Amount of ethanol
= 
=
mol
Mass of ethanol
= ![\frac{20}{9} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B9%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 
= 102 g (3 s.f.)
<u>Method 2: using </u><u>mass of carbon dioxide</u><u> produced</u>
Mole of carbon dioxide produced
= 97.7 ÷[12 +2(16)]
= 97.7 ÷44
=
mol
Moles of ethanol: moles of carbon dioxide= 1: 1
Moles of ethanol formed=
mol
Mass of ethanol formed
= ![\frac{977}{440} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B977%7D%7B440%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 102 g (3 s.f.)
Thus, 102 g of ethanol are formed.
Additional:
For a similar question on mass and mole ratio, do check out the following!
For this question, assume that you have 1 compound. This compound is divided in half once, so you are left with 0.5. That 0.5 that remains is divided in half again, this is the second half-life, and you are left with 0.25. The final half life involves dividing 0.25 in half, which means you are left with 0.125. For the answer to make sense, you need to know your conversions between decimals and fractions. To make it simple, if you have 0.125 and you times it by 8, you are left with your initial value of 1. Therefore, after three half-lives, you are left with 1/8th of the compound.
Answer:
[C₆H₅COO⁻][H₃O⁺]/[C₆H₅COOH] = Ka
Explanation:
The reaction of dissociation of the benzoic acid in water is given by the following equation:
C₆H₅-COOH + H₂O ⇄ C₆H₅-COO⁻ + H₃O⁺ (1)
The dissociation constant of an acid is the measure of the strength of an acid:
HA ⇄ A⁻ + H⁺ (2)
(3)
<em>Where the dissociation constant of the acid (Ka) is equal to the ratio of the concentration of the dissociated forms of the acid, [A⁻][H⁺], and the concentration of the acid, [HA]. </em>
So, starting from the equations (2) and (3), the constant equation for the dissociation reaction of benzoic acid in water, of the equation (1), is:
![K_{a} = \frac{[C_{6}H_{5}COO^{-}][H_{3}O^{+}]}{[C_{6}H_{5}COOH]}](https://tex.z-dn.net/?f=%20K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BC_%7B6%7DH_%7B5%7DCOO%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B6%7DH_%7B5%7DCOOH%5D%7D%20)
I hope it helps you!