Answer:
b) Ion-dipole
Explanation:
Intermolecular forces are the forces of attraction or repulsion between molecules, they are significantly weaker than intramolecular forces like covalent or ionic bonds.
- <em>Hydrogen bonds</em> happen between a partially positively charged hydrogen and another partially negatively charged, it's a type of dipole-dipole interaction, one of the strongest among intermolecular forces.
- <em>Ion-dipole</em> involves an ion and polar molecule, its strength is proportional to the charge of the ion. It's stronger than hydrogen bonds because the ion and the polar molecule align so positive and negative charges are next to another allowing maximum attraction.
- <em>Dipole-dipole </em>is an interaction between two molecules that have permanent dipoles, aligning to increase attraction.
- <em>Ion-dipole</em> induced usually happens when a non-polar molecule interacts with an ion causing the molecule to be temporary partially charged. It's a weaker interaction.
- <em>Dipole- Induced Dipole</em>, like ion-dipole induced this interaction causes one of the two involved molecules to be temporary partially charged.
Considering this information we can conclude that Ion-Dipole interaction is the strongest force among intermolecular forces.
I hope this information is useful to you!
Answer:
these micronutrients are not produced in our bodies and must be derived from the food we eat.
Explanation:
Vitamins and minerals are micronutrients required by the body to carry out a range of normal functions. However, these micronutrients are not produced in our bodies and must be derived from the food we eat. Vitamins are organic substances that are generally classified as either fat soluble or water soluble.
Actually when we burn metal salts, we cannot actually
really see distinct lines to appear because in reality, they are not really
visible to the human eye. There is only a certain range of wavelength of light that
our eyes can see.
To state in other way, some metal salts will give off light which has wavelengths that are outside of the visible region of the electromagnetic spectrum.<span> </span>
Explanation:
The given data is as follows.


Now, according to Michaelis-Menten kinetics,
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
where, S = substrate concentration =
M
Now, putting the given values into the above formula as follows.
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
![V_{o} = 6.8 \times 10^{-10} \mu mol/min \times [\frac{10.4 \times 10^{-6} M}{(10.4 \times 10^{-6}M + 5.2 \times 10^{-6} M)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%206.8%20%5Ctimes%2010%5E%7B-10%7D%20%5Cmu%20mol%2Fmin%20%5Ctimes%20%5B%5Cfrac%7B10.4%20%5Ctimes%2010%5E%7B-6%7D%20M%7D%7B%2810.4%20%5Ctimes%2010%5E%7B-6%7DM%20%2B%205.2%20%5Ctimes%2010%5E%7B-6%7D%20M%29%7D%5D)

= 
This means that
would approache
.
Answer:
Dissolving is when the solute breaks up from a larger crystal of molecules into much smaller groups or individual molecules. This break up is caused by coming into contact with the solvent. In the case of salt water, the water molecules break off salt molecules from the larger crystal lattice.
Explanation: