1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darya [45]
3 years ago
8

two strands of DNA produced during replication are copies of each other because each strand in the double helix is

Physics
2 answers:
Luden [163]3 years ago
6 0
The correct answer you should be looking for is complementary. :)
natulia [17]3 years ago
3 0
The answer is complementary
You might be interested in
A body of mass 3.0Kg is acted upon by a force of 24N, if the frictional force on the body is 13N.Calculate the acceleration of t
lisabon 2012 [21]

Answer:

Fnet=ma

24-13=3a

11/3=a

a=3.6m/s2

4 0
3 years ago
A baseball player hits a homerun, and the ball lands in the left field seats, which is 103m away from the point at which the bal
Sati [7]

(a) The ball has a final velocity vector

\mathbf v_f=v_{x,f}\,\mathbf i+v_{y,f}\,\mathbf j

with horizontal and vertical components, respectively,

v_{x,f}=\left(20.5\dfrac{\rm m}{\rm s}\right)\cos(-38^\circ)\approx16.2\dfrac{\rm m}{\rm s}

v_{y,f}=\left(20.5\dfrac{\rm m}{\rm s}\right)\sin(-38^\circ)\approx-12.6\dfrac{\rm m}{\rm s}

The horizontal component of the ball's velocity is constant throughout its trajectory, so v_{x,i}=v_{x,f}, and the horizontal distance <em>x</em> that it covers after time <em>t</em> is

x=v_{x,i}t=v_{x,f}t

It lands 103 m away from where it's hit, so we can determine the time it it spends in the air:

103\,\mathrm m=\left(16.2\dfrac{\rm m}{\rm s}\right)t\implies t\approx6.38\,\mathrm s

The vertical component of the ball's velocity at time <em>t</em> is

v_{y,f}=v_{y,i}-gt

where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve for the vertical component of the initial velocity:

-12.6\dfrac{\rm m}{\rm s}=v_{y,i}-\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.38\,\mathrm s)\implies v_{y,i}\approx49.9\dfrac{\rm m}{\rm s}

So, the initial velocity vector is

\mathbf v_i=v_{x,i}\,\mathbf i+v_{y,i}\,\mathbf j=\left(16.2\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(49.9\dfrac{\rm m}{\rm s}\right)\,\mathbf j

which carries an initial speed of

\|\mathbf v_i\|=\sqrt{{v_{x,i}}^2+{v_{y,i}}^2}\approx\boxed{52.4\dfrac{\rm m}{\rm s}}

and direction <em>θ</em> such that

\tan\theta=\dfrac{v_{y,i}}{v_{x,i}}\implies\theta\approx\boxed{72.0^\circ}

(b) I assume you're supposed to find the height of the ball when it lands in the seats. The ball's height <em>y</em> at time <em>t</em> is

y=v_{y,i}t-\dfrac12gt^2

so that when it lands in the seats at <em>t</em> ≈ 6.38 s, it has a height of

y=\left(49.9\dfrac{\rm m}{\rm s}\right)(6.38\,\mathrm s)-\dfrac12\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.38\,\mathrm s)^2\approx\boxed{119\,\mathrm m}

6 0
3 years ago
Atom in the ground state is said to be​
koban [17]

Answer:

Ground-state atom

Explanation:

When an atom is not excited, it is in its ground-state, which we refer as "standard" or "normal" state.

(Hopefully that helped you!)

GOOD LUCK

Astrophysicist Dr. D

3 0
3 years ago
Emily holds a banana of mass m over the edge of a bridge of height h. She drops the banana and it falls to the river below. Use
bearhunter [10]

Answer:

The mass of the banana is m and it is at height h.

Applying the Law of Conservation of Energy

              Total Energy before fall = Total Energy after fall

                                E_{i}  = E_{f}

Here, total energy is the sum of kinetic energy and potential energy

K.E_{i} + P.E_{i} = K.E_{f} + P.E_{f}       (a)

When banana is at height h, it has

                 K.E_{i} = 0    and    P.E_{i} = mgh          

and when it reaches the river, it has

       K.E_{f}  = 1/2mv^{2}    and   P.E_{f}  = 0

Putting the values in equation (a)

                              0 + mgh = 1/2mv^{2} + 0

                                      mgh = 1/2mv^{2}

<em>cutting 'm' from both sides</em>

<em>                                           </em>gh = 1/2v^{2}

                                          v = \sqrt{2gh}

Hence, the velocity of banana before hitting the water is

                                          v = \sqrt{2gh}

5 0
3 years ago
a car is moving with a velocity of 25m/s for 15s. calculate the displacement of the car. The acceleration of the car over the 15
SpyIntel [72]

Explanation:

this might help you i think so

8 0
3 years ago
Other questions:
  • What is the experimental group(s)?
    8·1 answer
  • If a certain mass of mercury has a volume of 0.002 m3 at a temperature of 20°C, what will be the volume at 50°C?
    7·1 answer
  • A 50-g ball moving at 10 m/s in the +x direction suddenly collides head-on with a stationary ball of mass 100 g. If the collisio
    15·1 answer
  • Meg has two glasses of grape juice. Glass A has 80 grams of juice at 30 °C. Glass B has 80 grams of juice at 50 °C.
    10·1 answer
  • A box slides to the right along a horizontal surface which is true about the friction force
    13·1 answer
  • 1.- Un barco recorre la distancia que separa Gran Canaria de Tenerife (90 km) en 6 horas. ¿Cuál es
    5·1 answer
  • Help me write this three paragraph Physics essay. I'll Venmo you, give me asking price.
    9·1 answer
  • 7. A runner increases his velocity from 0 m/s to 20 mis in 2 What is the runner's average acceleration?
    6·1 answer
  • How do the properties of waves correspond with observations of waves?
    13·1 answer
  • Seth and Diana were asked to be the leaders for a game of tag during recess at school. Seth and Diana can ensure that all intere
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!