For one mole of hydrogen, H, the atomic mass is 1 g per mole. Hydrogen contains 1 proton and zero neuton. A neutral atom of hydrigen also contains 1 electron.
Answer: c.They have a unique set of properties that can be used as identifiers.
Explanation:
Compound is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass.
Compounds can be decomposed into simpler constituents using chemical reactions.
Example: Water
Compounds have different properties than the elements it is made up of.
Thus the most accurate description of compounds is that they have a unique set of properties that can be used as identifiers.
<em>Answer :</em> 72.05 g/mol
<span>
<em>Explanation : </em>
Let's </span>assume that the given gas is an ideal gas. Then we can use ideal gas equation,<span>
PV = nRT<span>
</span>
Where,
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the gas </span></span>is,<span>
P = 777 torr = 103591 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³<span>
T = (</span>126 + 273<span>) = 399 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
103591 Pa x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 399 K<span>
n = 3.90 x 10</span>⁻³<span> mol
</span>Moles (mol) = mass (g) /
molar mass (g/mol)<span>
Mass of the gas = </span><span>0.281 g
</span>Moles of the gas = 3.90 x 10⁻³ mol
<span>Hence,
molar mass of the gas = mass / moles
= 0.281 g / </span>3.90 x 10⁻³ mol
<span> = 72.05 g/mol
</span>
I'm taking this lesson now, so imma help u ( if u need anything else ask me)
so given Molar mass= 32 g/mol
molar mass= (empirical formula) n
32 = (14x1 + 2x1) n
32 = 16 n , so n= 2
so, molecular formula= N2H4