Answer:
CuFeS2
Explanation:
Calculate the moles of each substance by doing moles= mass/relative atomic mass. you should get 0.25 moles of copper and iron and 0.5 moles of sulfur. Then divide all of those numbers by 0.25 (as its the lowest value) you should get 1 for copper and iron and 2 for sulfur. This represents the ratio that they are in within the mineral.
Answer:
See explanation below
Explanation:
In this case, we have the equilibrium reaction which is:
H₂ + I₂ <------> 2HI Kp = 54
Now, we have the partial pressures of each element in equilibrium, therefore, we can use the expression of equilibrium in this case to calculate the remaining pressure:
Kp = PpHI² / PpH₂ * PpI₂
Solving for the partial pressure of iodine:
PpI₂ = PpHI² / PpH₂ * Kp
Replacing the given values, we have:
PpI₂ = (2.1)² / 0.933 * 54
PpI₂ = 4.41 / 50.382
PpI₂ = 0.088 atm
Answer : Half life and radioactive decay are inversely proportional to each other.
Explanation :
The mathematic relationship between the half-life and radioactive decay :
................(1)
where,
N = number of radioactive atoms at time, t
= number of radioactive atoms at the beginning when time is zero
e = Euler's constant = 2.17828
t = time
= decay rate
when
then the number of radioactive decay become half of the initial decay atom i.e
.
Now substituting these conditions in above equation (1), we get

By rearranging the terms, we get

Now taking natural log on both side,

By rearranging the terms, we get

This is the relationship between the half-life and radioactive decay.
Hence, from this we conclude that the Half life and radioactive decay are inversely proportional to each other. That means faster the decay, shorter the half-life.
Answer:
it's none because the graph is decreasing like a milf so that why