Answer with Explanation:
The force of attraction between 2 charges of magnitude
separated by a distance 'r' is given by
where
is a constant known as permitivity of free space

Applying the given values in the above relation we get

Answer:
Explanation:
The question here is that if sneezy hands from a similar rope while delivering presents at the earth's equator, what will be the tension in the rope be. Here is the solution:The tension on the rope when it is at pole, T= 455 NTo find, the tension, t= mgTo solve for mass, m= t/g. Substituting this we have, m=455/9.8. m=46.43 kgAssume that the downwards acceleration is, a= -46.43 m/s^2.T = mg + maT = (46.43 kg) ( 9.8 m/s^2) - (46.43 kg) (-46.43 m/s^2)T = 455.01 kg-m/s^2 - -2155.74 kg-m/s^2T = 2610.75 kg-m/s^2 = 2610.75 N
Answer:
22.17 degree
Explanation:
n = 1.52
Angle of incidence, i = 35 degree
Let the angle of refraction is r.
use the Snell's law
n = Sin i / Sin r
Sin r = Sin i / n = Sin 35 / 1 .52
Sin r = 0.37735
r = 22.17 degree
Thus, the ray is refracted at an angle of 22.17 degree.
You hold a piece of wood in one hand and a piece of iron in the other. Both pieces have the same volume, and you hold them fully under water at the same depth. At the moment you let go of them, which one experiences the greater buoyancy force?<span>
</span>
Answer:
The bulk modulus of the liquid is 1.229 x 10¹⁰ Pa
Explanation:
Given;
density of liquid, ρ = 1400 kg/m³
frequency of the wave, f = 390 Hz
wavelength, λ = 7.60 m
The speed of the sound is given by;
v = fλ
v = 390 x 7.6
v = 2964 m/s
The bulk modulus of the liquid is given by;

where;
B is bulk modulus
B = (1400)(2964)²
B = 1.229 x 10¹⁰ N/m²
B = 1.229 x 10¹⁰ Pa
Therefore, the bulk modulus of the liquid is 1.229 x 10¹⁰ Pa