Answer:
8050 J
Explanation:
Given:
r = 4.6 m
I = 200 kg m²
F = 26.0 N
t = 15.0 s
First, find the angular acceleration.
∑τ = Iα
Fr = Iα
α = Fr / I
α = (26.0 N) (4.6 m) / (200 kg m²)
α = 0.598 rad/s²
Now you can find the final angular velocity, then use that to find the rotational energy:
ω = αt
ω = (0.598 rad/s²) (15.0 s)
ω = 8.97 rad/s
W = ½ I ω²
W = ½ (200 kg m²) (8.97 rad/s)²
W = 8050 J
Or you can find the angular displacement and find the work done that way:
θ = θ₀ + ω₀ t + ½ αt²
θ = ½ (0.598 rad/s²) (15.0 s)²
θ = 67.3 rad
W = τθ
W = Frθ
W = (26.0 N) (4.6 m) (67.3 rad)
W = 8050 J
C. You’re welcome
Leave a like
Answer:
The distance is
Explanation:
From the question we are told that
The period of the moon 
The mass of the planet is 
Generally the period of the moon is mathematically represented as

Here G is the gravitational constant with value

=> 
=> 
=> 
=>
j
=>
Answer:
total stretch of the double-length spring will be 20 cm
Explanation:
given data
length x1 = 10 cm
mass = 1 kg
mass = double = 2 kg
to find out
the total stretch of the double-length spring will be
solution
we can say here spring constant is
k = mg ............1
k is spring constant and m is mass and g is acceleration due to gravity
so for in 1st case and 2nd case with 1 kg mass and 2 kg mass
kx1 = mg .........................2
and
kx2 = 2mg ........................3
x is length
so from equation 2 and 3



x2 = 20
so total stretch of the double-length spring will be 20 cm