Answer:
The structures are attached in file.
Hydrogen bonding and intermolecular forces is the reason for ranks allotted.
Explanation:
In determining Lewis structure, we calculate the overall number of valence electrons available for bonding. Making carbon (the least electronegative atom) the central atom in the structure, we allocate valence electrons until each atom has achieved stability.
In order of decreasing affinity to water molecules:

This is due to the fact that the
will accept protons more readily than the bicarbonate ion,
. Carbonic acid,
will not accept any more protons, hence it is the least attractive to water molecule, even though soluble.
<h3>Answer:</h3>
89.6 L of O₂
<h3>Solution:</h3>
The balanced chemical equation is as,
CH₄ + 2 O₂ → CO₂ + 2 H₂O
As at STP, one mole of any gas (Ideal gas) occupies exactly 22.4 L of Volume. Therefore, According to equation,
44 g ( 1 mol) CO₂ is produced by = 44.8 L (2 mol) of O₂
So,
88 g CO₂ will be produced by = X L of O₂
Solving for X,
X = (88 g × 44.8 L) ÷ 44 g
X = 89.6 L of O₂
Atoms
Explanation:
Chemical bonds results from the rearrangement of atoms in a chemical species.
It deals with the various attractive forces joining chemical species togethe.
- When atoms are re-arranged, they form chemical bonds that leads to production of new compounds.
- This is made possible by the exchange or sharing of electrons.
- The driving force for most interatomic bonding is the tendency to have completely filled outer energy levels like the noble gases.
- When atoms are re-arranged in compounds they lead to the production of chemical bonds.
learn more:
Ionic bonds brainly.com/question/6071838
#learnwithBrainly
If in a redox reaction oxidation state of elements decreases or looses electron(s), the element is said to be oxidized. Hope this helps you!
Answer:
The two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place
Explanation:
A complex is made up a central metal atom or ion and ligands. Ligands are lewis bases and they possess lone pairs of electrons. A complex is formed when electrons are donated from ligand species to metals.
However, if the ligand has a negative charge at a particular location and we try to put electrons from the metal near the electrons from the ligand, the two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place.