Answer:
Revise energy transfers and use sankey diagrams to calculate the efficiency of these conversions with BBC ... Efficiency is a measure of how much useful energy is converted. Part of ... This is the Sankey diagram for a typical filament lamp: 100 joules of electrical energy is converted to 10 joules of light energy and 90 joules.
Explanation:
Answer:
You drive 0.025 miles blind (or 132 ft)
Explanation:
(distance) = (speed) x (time)
(distance blind) = (speed) x (time looking for CD)
(distance blind) = (45 mi/hr) x (2 s) x (1/3600 hr/s) = 0.025 miles = 132 ft
Answer:
11.0 kg m/s
Explanation:
The impulse exerted on the cart is equal to its change in momentum:

where
m = 5.0 kg is the mass of the cart
is its change in speed
Substituting numbers into the equation, we find

Answer:
Friction is a force that holds back the movement of a sliding object.
Explanation:
The two types of friction: Static friction and Kinetic friction. Static friction operates between two surfaces that aren't moving relative to each other, while kinetic friction acts between objects in motion.
Answer:
A) d = 11.8m
B) d = 4.293 m
Explanation:
A) We are told that the angle of incidence;θ_i = 70°.
Now, if refraction doesn't occur, the angle of the light continues to be 70° in the water relative to the normal. Thus;
tan 70° = d/4.3m
Where d is the distance from point B at which the laser beam would strike the lakebottom.
So,d = 4.3*tan70
d = 11.8m
B) Since the light is moving from air (n1=1.00) to water (n2=1.33), we can use Snell's law to find the angle of refraction(θ_r)
So,
n1*sinθ_i = n2*sinθ_r
Thus; sinθ_r = (n1*sinθ_i)/n2
sinθ_r = (1 * sin70)/1.33
sinθ_r = 0.7065
θ_r = sin^(-1)0.7065
θ_r = 44.95°
Thus; xonsidering refraction, distance from point B at which the laser beam strikes the lake-bottom is calculated from;
d = 4.3 tan44.95
d = 4.293 m