1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andru [333]
4 years ago
11

Exercise combined with a blank can help control weight

Physics
1 answer:
SIZIF [17.4K]4 years ago
8 0

Answer:

Exercise combined with a diet can help manage weight, or you can contact a doctor

Explanation:

You might be interested in
Learning Goal: To understand the behavior ofthe electric field at the surface of a conductor, and itsrelationship to surface cha
Ivan

Complete Question

The complete question is shown on the first uploaded image  

Answer:

a   it is always zero

b  0

c  \eta  =  -\epsilon _o E

Explanation:ss

Here the  net charge is  on the outer surface of the conductor thus this means that the net charge inside the conductor is zero

Generally the charge density of a conductor is dependent on the charge per unit area  which implies that the charge density is dependent on the net charge  so this  means that the charge density inside the conductor is zero

 

Generally the direction of electric field this from the  positive charge to the negative charge  so from the question we can deduce  that the negative charge is located on the surface of the conductor

    So We can mathematically define the charge density on the surface of the electric field as

             ∮E \cdot dA =  \frac{-Q}{\epsilon _o}

Where E is the electric field

          dA change in unit area

           -Q is the negative charge

          \epsilon _o  is the permittivity of free space

So

          EA  =  \frac{-Q}{\epsilon _o }

           \frac{Q}{A}  =  -\epsilon _o E

          \eta  =  -\epsilon _o E

Where \eta is the charge density

   

8 0
3 years ago
The brakes of a 125 kg sled are applied while it is moving at 8.1 m/s, which exerts a force of 261 N to slow the sled down. How
sammy [17]

Answer:

15.7 m

Explanation:

m = mass of the sled = 125 kg

v₀ = initial speed of the sled = 8.1 m/s

v = final speed of sled = 0 m/s

F = force applied by the brakes in opposite direction of motion = 261

d = stopping distance for the sled

Using work-change in kinetic energy theorem

- F d = (0.5) m (v² - v₀²)

- (261) d = (0.5) (125) (0² - 8.1²)

d = 15.7 m

6 0
3 years ago
During the time interval from 0.0 to 10.0 s, the position vector of a car on a road is given by x(t) = a + bt + ct2, with a = 17
Juli2301 [7.4K]

The car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.

<h3>Average velocity of the car</h3>

The average velocity of the car is calculated as follows;

x(t) = a + bt + ct2

v = dx/dt

v(t) = b + 2ct

v(0) = -10.1 m/s + 2(1.1)(0) = -10.1 m/s

v(10) = -10.1 + 2(1.1)(10) = 11.9 m/s

<h3>Average velocity</h3>

V = ¹/₂[v(0) + v(10)]

V = ¹/₂ (-10.1  + 11.9 )

V = 0.9 m/s

Thus, the car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.

Learn more about velocity here: brainly.com/question/4931057

#SPJ1

3 0
2 years ago
Alec says the force of gravity is stronger on a piece of paper after it’s crumpled. His classmate, Jordan, disagrees. Alec “prov
Anika [276]
No, gravity acts equally on all objects.  The crumpled paper falls faster because it resists the drag force due to the atmosphere because of its compact size.  A flat piece of paper has an extended body and "catches" the air and falls more slowly.  In a vacuum they would fall at the same rate either way.
8 0
3 years ago
A 2.31 kg rope is stretched between supports 10.4 m apart. If one end of the rope is tweaked, how long will it take for the resu
zlopas [31]

Answer:

t = 0.657 s

Explanation:

First, let's use the appropiate equations to solve this:

V = √T/u

This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.

Where:

V: Speed of the disturbance

T: Tension of the rope

u: linear density of the rope.

The density of the rope can be calculated using the following expression:

u = M/L

Where:

M: mass of the rope

L: Length of the rope.

We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:

u = 2.31 / 10.4 = 0.222 kg/m

Now, replacing in the first equation:

V = √55.7/0.222 = √250.9

V = 15.84 m/s

Finally the time can be calculated with the following expression:

V = L/t ----> t = L/V

Replacing:

t = 10.4 / 15.84

t = 0.657 s

4 0
3 years ago
Other questions:
  • The light of a star that can be seen from Earth is called what? (Apparent or Absolute Magnitude)
    13·1 answer
  • An electron that has an instantaneous velocity of ???? = 2.0 × 106 m ???? ???? + 3.0 × 106 m ???? ???? is moving through the uni
    9·1 answer
  • If you cut a pill in half will it have less of how much it has to help you or the same amount?
    6·2 answers
  • Two protons are 1 × 10−10 m apart (about one atomic radius). Which interaction between two protons is stronger, the gravitationa
    15·1 answer
  • You notice the flagpole at school vibrating in the breeze. You count the vibrations and find that
    11·1 answer
  • Energy is the capacity to do what ? motion or work
    14·1 answer
  • A hypothetical atom has three energy levels: the ground-state level and levels 1.50 eV and 5.00 eV above the ground state. What
    5·1 answer
  • Two identical arrows, one with twice the speed of the other, are fired into a bale of hay. Assuming the hay exerts a constant fr
    14·1 answer
  • 7. If a hummingbird hovers 30 cm in front of a window, what will it see?
    15·1 answer
  • Set local ground level to 700 ft, and record the inches of mercury.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!